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Abstract—Having been adopted as a standard development
practice in many open-source software projects, continuous
integration (CI) provides many benefits when its practices are
employed effectively. However, these well-established benefits are
easily negated when the principles of CI are not adhered to.
In this study, we empirically analyze the prevalence of this
neglect, dubbed Continuous Integration Theater, across open-
source GitHub software projects that employ the GitHub Actions
CI tool. Specifically, we analyze 1,156 projects to quantify four
CI theater anti-patterns, namely infrequent commits to mainline,
poor test coverage, lengthy broken build periods, and lengthy
builds. We determine that commits are infrequent in 78.03%
of studied projects, and that the average test coverage is only
68.37%. However, the duration of builds and broken build
periods are not typically excessive, nor are they particularly
common. Our analyses do reveal significant disparity between
projects of different programming languages, with respect to
different CI theater anti-patterns and project sizes.

Index Terms—continuous integration, bad practices, test cov-
erage, GitHub Actions

I. INTRODUCTION

As described by prominent software developer Martin
Fowler, CI is a practice where members of a software de-
velopment team integrate their code changes into a shared
repository at least daily, each time triggering an automated
build and tests to verify the integration [1]. As a result of its
popularity, many tools have emerged to support CI through
the automation of build compilation, test execution, and other
related processes.

While CI has long been revered for its potential to reduce
integration problems and hasten software releases [1], the mere
adoption of a CI tool does not imply adoption of proper
CI practices. Furthermore, recent work has confirmed that
purported benefits of CI may be negated when proper CI
practices have not also been adopted [2]. In an effort to for-
malize this neglect, Thoughtworks Technology Radar recently
coined the term CI Theater [3] to describe four common CI
anti-patterns, namely infrequent integration into the mainline
(master branch), poor test coverage, builds remaining broken
for extended periods, and using CI only for branches other
than mainline. Further research of the CI theater problem
is critically important, in order to understand common anti-
patterns that erode the benefits of CI, which in turn waste
time and money.

In this paper, we perform an empirical analysis of open-
source GitHub software projects utilizing GitHub Actions for

CI, in an attempt to quantify the prevalence of CI theater anti-
patterns. Our study is an ideal approach to gather statistics on
CI theater, as we analyze a large sample of real-world projects,
and analyze metrics across several relevant dimensions. Our
findings have major implications to practitioners and de-
velopers, whom stand to learn about proper CI principles
for a modern CI tool, and for researchers, whom will find
further evidence towards widespread abuse of CI anti-patterns.
For transparency, a replication package containing all scripts
utilized in this study is available on GitHub [4].

II. RELATED WORKS

Previous works have proposed and studied a wide variety
of bad CI practices [5] [6], derived both CI literature and from
developers’ opinions. By surveying the literature, Duvall et al.
assembled a catalog of 50 patterns and corresponding anti-
patterns for various topics and phases within CI [7]. While
CI theater anti-patterns, such as low commit frequency and
excessive build duration, do appear in these works, many opin-
ionated practices are also discussed, such as the management
of build artifacts. In this paper, we focus on indisputable anti-
patterns derived from the definition of CI, and employ empir-
ical analysis to quantify their existence. Recent works have
attempted to empirically survey bad practices of developers
using CI. Zampetti et al. identify 73 ’bad smells’ relating to
CI pipeline management and process, and gather empirical
data through semi-structured interviews and mining of Stack
Overflow questions [8]. Our study directly analyzes a large
sample of software projects, rather than deriving information
or new anti-patterns from interviews or indirect data sources.

To the best of our knowledge, only one other study has em-
pirically evaluated CI theater anti-patterns using open-source
project and build data. Felidré et al. perform an empirical
study of open-source GitHub projects that use TravisCI for
CI [9], and empirically measure the prevalence of four CI
anti-patterns derived from CI theater. In our study, we analyze
open-source GitHub software projects that use GitHub Actions
for CI, adopting the same CI theater anti-patterns, research
questions, and analysis methodology. The study of GitHub
Actions theater is particularly novel among other CI tools,
due to the inherent centralization of CI and repository for
GitHub users, the generous free tier pricing, and plethora
of capabilities beyond traditional CI processes. Our study
approaches several analyses from alternative perspectives, both
to accommodate differences inherent to GitHub Actions (eg.



potential non-CI usage), and to improve upon rigid assump-
tions of previous work (eg. including projects that use a wide
variety of programming languages).

III. STUDY DESIGN

In this section, we introduce the steps taken for data
collection, data preprocessing, and analysis.

A. Research Questions

In this study, we focus on four research questions, borrowed
from the recent empirical study of CI theater in TravisCI
projects [9]. Each research question seeks to quantify the
prevalence of a particular CI theater anti-pattern. Three of
the four research questions map directly to three anti-patterns
from the definition of CI theater, while one additional question
investigates the frequency of prohibitively lengthy CI builds.

1) RQ1: How common is running CI in mainline but
with infrequent commits?: In order to facilitate continuous
integration, members of a software team must continuously
merge changes into the mainline. This requirement is not
only inherent to the definition of CI, but is a key factor in
the efficiency of merge conflict resolution. Developers may
neglect to integrate their changes, or instead author changes
on a separate branch, leading to difficult merges that ultimately
stunt integration continuity. Understanding the prevalence of
this issue is important to leaders of development teams, and
developers themselves, whom may be unknowingly hindering
the velocity and efficiency of their teams by tolerating infre-
quent mainline merges.

2) RQ2: How common is running a build in a software
project with poor test coverage?: As part of the continu-
ous integration of code changes, automated tools build code
changes and execute tests, to ensure that new bugs are not
introduced and merged into mainline unknowingly. Without
these automated processes, CI practices would be trivial and
ineffectual. Furthermore, having relatively few tests, or having
tests that do not sufficiently cover (test) the code, would be
equally ineffectual. Understanding test coverage across soft-
ware projects is critical in determining whether CI yields any
benefit to users of GitHub Actions, since few other benefits can
be reaped from the continuous automation. These findings are
valuable to any developer employing CI, due to the particular
ease in which poor test coverage may develop and become
overlooked (ie. bugs may be present, yet go unnoticed).

3) RQ3: How common is allowing the build to stay
broken for long periods?: When subject to long periods
where mainline builds remain broken, the velocity and release
cadence of a software project may grind to a halt. Broken
builds prevent frequent integration into mainline, a central
tenet of CI, and by their nature, prevent releases until fixed. On
the other hand, excessive broken build duration may indicate
failure to incorporate feedback provided by CI, which should
be utilized to prevent and mitigate issues. Although this anti-
pattern is derived from the definition of CI theater, measuring
its prevalence is vital to understanding whether teams incor-
porate CI feedback effectively. Stakeholders responsible for

financing the adoption of CI, such as software managers or
executives, may find these statistics particularly valuable, as
they ultimately reflect teams’ ability to utilize and leverage CI
and CI tools.

4) RQ4: How common are long running builds?: Among
other potential benefits, CI aims to improve team velocity, and
provide rapid feedback for code changes via automated build
and test execution. By definition, slow builds are incapable of
providing rapid feedback, and intuitively impair the frequency
of mainline integration. As established in the literature, slow
CI feedback may force developers to switch to other tasks,
consequently degrading team velocity and efficiency [10]. Sev-
eral works concur that quick builds should take no longer than
10 minutes [1] [11], which we will employ as a threshold in
our analysis. Measuring the prevalence of long running builds
is especially important in understanding whether speed-related
benefits of CI are observed in practice. Therefore, stakeholders
responsible for the expensive adoption and maintenance of CI
stand to benefit from this analysis, as this analysis illustrates
both the costs (ie. resource utilization) and rewards (ie. time
until feedback) of CI in software projects.

B. Data Curation

To obtain an initial seed of projects for our study, we
obtained a snapshot of GHTorrent [12], a curated offline mirror
of GitHub data mined from the GitHub API. The snapshot is
dated March 6, 2021, which falls well outside the 2019 launch
window of GitHub Action. This 539GB archive contains
detailed metadata for over 189 million GitHub repositories.

In an effort to augment the static project data from
GHTorrent, we query GitHub API to retrieve GitHub Actions
workflow files (used for CI configuration) and run history
(equivalent to build logs). The Coveralls API is also queried
to obtain test coverage information (for RQ2), though only for
projects actively utilizing the Coveralls service. The initial set
of studied projects, derived from the GHTorrent seed dataset,
must be filtered to remove those unsuitable for our study. We
follow a multi-stage filtering approach to remove irrelevant
GitHub projects, using a combination of GHTorrent data and
GitHub API data. A final set of 1,156 projects (with workflow
runs) is obtained for our study. Fig. 1 illustrates the stages of
preprocessing employed, which are described in the following
subsections.

1) Stage 1: Remove Projects With No Member Data:
Although GHTorrent has records of 189,524,128 projects (in
the Projects table), only 9,549,783 unique projects have as-
sociated project membership records (in the Project Members
table). These records denote the number of members (active
contributors) for a given project repository, and are necessary
to filter projects by team size in the Stage 2. Thus, we reduce
our initial set of projects to those with membership records.

2) Stage 2: Remove Projects Having Only A Single
Member: Since the lack of integration complexity in single-
developer software projects precludes most benefits of CI, we
choose to remove single-member projects.



Fig. 1. The filtering process, which remove unsuitable projects from our study.

3) Stage 3: Remove Forked Projects: To eliminate the
possibility of statistical bias in our analyses, we remove
projects that are forks of other projects. This data is also
recorded by GHTorrent, and is performed offline.

4) Stage 4: Remove Projects Using Unsupported Program-
ming Languages: For our study, we chose to focus only on
Ruby, Java, C / C++, JavaScript / TypeScript, and Python
projects. We use the programming language labels given to
each project in the GHTorrent dataset.

5) Stage 5: Remove Projects Lacking GitHub Actions
Workflow File: In this stage, we begin to collect GitHub Ac-
tions build data. In the Actions tool, configurations are defined
in workflow files, and specify various sequences of actions
and their triggers. Workflow files must be valid YAML files
(ie. .yml or .yaml extension), and must be placed within the
.github/workflows/ directory in the project. For each project,
we query the GitHub API to check for the existence of
workflow files on the mainline branch. We remove all projects
that do not have any workflow files.

6) Stage 6: Remove Projects Not Using GitHub Actions
for CI: Within workflow files, actions may be specified
as arbitrary Bash commands, selected from pre-built actions
available on GitHub Marketplace, or imported from other
scripts in the project. Due to this flexibility, Actions is often
employed for purposes beyond CI, such as issue management,
pull request management, or communication with third-party
services. To ensure that all studied workflows facilitate CI,
we filter out workflows that do not explicitly execute an
established build or test command. We query the GitHub API
to obtain the YAML content of all workflow files remaining
after the previous stage. YAML files are subsequently parsed to
extract Bash commands, which are analyzed using predefined
regular expressions that identify popular usage of build and
test tools, for supported programming languages (eg. Gradle,
NPM, CMake).

7) Stage 7: Remove Workflows Having Less Than 100
Runs: In the final stage, we query the GitHub API to obtain
the 100 most recent runs (ie. build logs) for each remaining
workflow. We then remove workflows with fewer than 100
total runs, guaranteeing a large sample of build statistics for
workflows and projects during the analysis. As in the previous
stage, projects having no remaining workflows (after filtering)
are removed from the study.

IV. STUDY RESULTS

In this section, we discuss our analysis process for each
research question, and present evidence to support our obser-
vations from the study. Where appropriate, we discuss trends
with respect to programming language and project size. Project
sizes are defined relative to the number of project members,
with 2 members for very small, 3-4 for small, 5-9 for medium,
10-19 for large, and 20+ for very large.

A. RQ1: How common is running CI in mainline but with
infrequent commits?

To answer this research question, we analyze mainline
commits across all projects, and determine how many projects
commit frequently (as opposed to infrequently). We first
build a commit timeline for each project, by extracting the
head commit timestamps from all workflow runs. Since we
retrieve a fixed number of the most recent workflow runs in
the preprocessing phase, we ignore those occurring on the
potentially-partial oldest and newest dates. We calculate the
average daily commit rate for each project, then calculate the
average daily commit rate across all projects. We utilize the
latter as a threshold, such that projects whose average daily
commit rate is less than the threshold are deemed infrequent.
Finally, we determine and analyze the proportion of frequent
vs. infrequent committing projects.

Our analysis yields an average daily commit rate of 1.18
across all projects. A significant factor impacting this rate is
the number of days with 0 commits, which if ignored during
the calculation, would result in a significantly higher average
of 3.15 commits per day. This suggests that many teams have
many days without a single commit to mainline, and therefore
violate the daily committing tenet of CI. Further evidence to
this neglect is apparent in the proportion of infrequent projects.
We find that 78.03% of projects commit infrequently on aver-
age, leaving only 21.97% whom commit more than 1.18 times
per day. These low rates are consistent across programming
languages and project size, though projects do exhibit slightly
higher commit averages as project size increases.

In summary, an average of 1.18 commits are made to
mainline per day, across all studied projects, demonstrating
conformance to the daily committing expectation for CI
(though not by any impressive amount). 78.03% of projects fail
to commit more than 1.18 times per day on average, however,



Fig. 2. Duration of broken build periods, shown separately for Java projects and Ruby projects.

suggesting that only a few very-frequent committers (outliers)
truly commit more than once daily.

B. RQ2: How common is running a build in a software project
with poor test coverage?

In this analysis, we query the Coveralls API to retrieve
coverage reports. Each report expresses the total test coverage
as a percentage, and is specific to the project code snapshot
in a certain commit. To ensure that coverage statistics are
representative of the workflow runs collected, we seek reports
for mainline commits occurring no earlier than 7 days before
the creation date of the most recent workflow run. From these
reports, we select the most recent. In total, only 23 of the
1,156 selected projects have Coveralls records meeting these
criteria. This set consists of 4 Java projects, 10 JavaScript /
TypeScript projects, 6 Python projects, 2 Ruby projects, and
1 C / C++ project. Finally, we calculate average test coverage
over all projects, as well as when grouped by programming
language.

Across all projects, we find that the average test coverage is
68.37%, with a median of 77.93%. This suggests that several
outliers exist with particularly low coverage values (ie. the
distribution is skewed to the left), which means that several
projects have very low test coverage. Over all projects, the
standard deviation is 29.41%, which further attests to the
noteworthy variance among coverage values. Overall, these
statistics indicate that many projects do retain adequate cover-
age, though many outliers significantly neglect test coverage,
and therefore proper CI principles.

These findings are reinforced when grouped by program-
ming language, which illustrates significant variance in this di-
mension as well. Having the best reported coverage, JavaScript
/ TypeScript projects have an average of 84.47%, median
86.94%, and standard deviation of 12.84%. Moreover, the
minimum coverage was 60.95%, while the maximum was
97.88%. On the other hand, Python projects have an average
of 49.79% and median of 52.93%, with standard deviation
of 29.81%. Despite similar sample sizes, Python variance is
more than double that of JavaScript / TypeScript, and has
several outliers (including at least one value of 0%). Across
all languages, only JavaScript / TypeScript and Ruby projects

do no practice CI theater with via coverage neglect, while Java
and Python projects exhibit poor averages.

In summary, much variance exists across programming
languages, with Java and Python projects having less than
50% average coverage. For other languages, and across all
languages, average coverage is adequate though not good.
Thus, CI theater not uncommon with respect to the insufficient
test coverage anti-pattern.

C. RQ3: How common is allowing the build to stay broken
for long periods?

To answer this research question, we first extract the head
commit timestamp and conclusion (for our purposes, success
or non-success) associated to each workflow run, in each
project. We then create a timeline of timedeltas (elapsed time
between two timestamps) for the workflow, to capture the
elapsed time during all observed periods of unsuccessful runs.
We combine timedeltas across all workflows and projects, then
calculate statistics across project timedeltas, and then again
across programming languages and project size.

First, we calculate a duration threshold, equal to the 3rd
quartile timedelta across all projects. Workflow run (build)
timedeltas exceeding this threshold are deemed excessively
long. We calculated a threshold of 22:41:54 (denoted as
hours:minutes:seconds), and found that 51.99% of projects
have at least one run exceeding it. However, the average bro-
ken duration across all projects (8345 timedeltas) is 82:27:37
(approximately 3 days 10 hours), while the median is only
1:22:32 (approximately 1.5 hours). The average is significantly
skewed by high outliers, with a standard deviation exceeding
16 days, and maximum duration exceeding 491 days. There-
fore, we assert that excessively long broken builds are not
common in studied projects.

When grouped by programming language, as in Fig. 2,
projects medians are very similar and close to the overall
median. The average broken build duration is higher for Java
and Ruby projects than across all projects, by approximately
1 day, and is lower for Python projects by approximately 12
hours. This suggests that Java and Ruby projects are more
neglectful for fixing broken builds, and for demonstrating
CI theater. The standard deviation across Java and Ruby



Fig. 3. Duration of builds, shown separately for C / C++ projects and Ruby projects.

timedeltas exceeds those of all other languages as well, with
values of 465:09:16 (approximately 19 days 9 hours) and
534:59:16 (22 days 7 hours) respectively.

In summary, we observe that only 51.99% of studied
projects have one or more lengthy broken builds, yet most
broken builds are fixed quickly. While this CI theater criteria
is not common overall, Java and Ruby projects are significantly
more neglectful of broken builds than other languages.

D. RQ4: How common are long running builds?

To answer our final research question, we utilize a 10 minute
build duration threshold established in the CI literature [1]
[11], where workflow runs (builds) whose length exceeds this
threshold are deemed (excessively) long running. In our anal-
ysis, we extract and aggregate the duration of each workflow
run across all workflows, for each project. We then calculate
the proportion of projects having at least one run exceeding
the 10 minute threshold. In addition, we produce statistics and
plots describing summarizing duration all projects, as well as
when grouped by programming language and project size.

Across all projects, 81.23% have one or more runs ex-
ceeding the 10 minute threshold. Similar to the criteria in
other research questions, much variance is exhibited across
all projects, with a standard deviation of 18:37:49. While the
average build takes 53 minutes 23 second, the median build
takes only 6 minutes 20 seconds. Thus, while the majority
of projects have tolerated long running builds in the past, the
majority of builds do finish quickly.

Most notably, JavaScript / TypeScript projects contribute
disproportionately to this variance, having the highest average
duration across all languages with 1 hour 16 minutes, as well
as the highest standard deviation of 24:57:39. By contrast, the
lowest average duration of 27 minutes 36 seconds belongs to
Java projects. Several projects from all languages have outliers
that greatly exceed 10 minutes, and therefore fall victim to CI
theater. Of all language groups, only Ruby and C / C++ median
durations exceed the threshold, with 16 minutes 11 seconds
and 11 minutes 17 seconds respectively. Since more runs in
these languages exceed the threshold than not, we assert that
projects using Ruby or C / C++ tend to neglect this aspect of
CI theater. Fig. 3 illustrates that duration generally increases as

project size increases, which is particularly pronounced among
Ruby projects.

In summary, 81.23% of projects have experienced at least
one long running build, though most builds finish well below
the 10 minute threshold. Builds in Ruby and C / C++ projects
typically exceed the threshold, indicating that projects using
these languages typically practice CI theater instead of CI.

V. DISCUSSION

In our analyses, we present empirical evidence quantifying
the neglect of CI principles in real-world GitHub Actions
projects. All four CI theater criteria (from the research ques-
tions) are present in many studied projects, indicating that
many development teams neglect one or more principles of
CI. Practitioners, namely developers and managers, should pay
attention to these anti-patterns, to ensure that their own CI
strategy adheres to proper CI practices. Avoiding CI theater
anti-patterns is essential to retaining the benefits expecting
when adopting CI or a CI tool.

When viewed from a different perspective, certain anti-
patterns are significantly more common to projects of partic-
ular programming languages. Practitioners should understand
this evidence, which empirically suggests that certain program-
ming languages and their frameworks present more difficulty
for adhering to CI principles. Of particular interest are the
metrics affected by framework-supported tools, such as test
coverage (RQ2) and build duration (RQ4).

Relating to the broader theory of CI neglect, our findings
echo many of those established in the literature. More im-
portantly, when considering the similar findings of studies for
other CI tools, our work reaffirms that CI tools have yet to sig-
nificantly mitigate many of the CI theater anti-patterns. When
compared to the recent TravisCI CI theater empirical study
[9], we find that builds have become even more lengthy, code
coverage has dropped, and commits to mainline have become
less frequent. As the results of the aforementioned paper were
largely confirming widespread neglect, our analyses highlight
and reaffirm the larger trend towards neglect of CI principles.
However, we find that builds are fixed significantly faster in
our GitHub Actions-based projects, which suggests that some
aspect of the tool, or perhaps its users, are contributing towards
improved CI practices in modern software projects.



REFERENCES

[1] Fowler, M. & Foemmel, M. Continuous integration. (2006)
[2] Luz, W., Pinto, G. & Bonifácio, R. Building a collaborative culture:

a grounded theory of well succeeded devops adoption in practice. Pro-
ceedings Of The 12th ACM/IEEE International Symposium On Empirical
Software Engineering And Measurement. pp. 1-10 (2018)

[3] Thoughtworks Technology Radar, CI theatre.
https://www.thoughtworks.com/en-ca/radar/techniques/ci-theatre.
Accessed 2022-04-15.

[4] Rorseth, J. CI-Theater-GH-Actions. GitHub Repository. (2022),
https://github.com/joelrorseth/CI-Theater-GH-Actions

[5] Duvall, P., Matyas, S. & Glover, A. Continuous integration: improving
software quality and reducing risk. (Pearson Education,2007)

[6] Humble, J. & Farley, D. Continuous delivery: reliable software re-
leases through build, test, and deployment automation. (Pearson Edu-
cation,2010)

[7] Duvall, P. Continuous delivery patterns and antipatterns in the software
lifecycle. DZone Refcard. 145 (2011)

[8] Zampetti, F., Vassallo, C., Panichella, S., Canfora, G., Gall, H. & Di
Penta, M. An empirical characterization of bad practices in continuous
integration. Empirical Software Engineering. 25, 1095-1135 (2020)
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