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ABSTRACT
In recent years, many of the significant advances in artificial in-
telligence models have come at the cost of increased architectural
complexity. Naturally, this complexity has jeopardized the inher-
ent explainability of model decisions, and has inspired a line of
work dedicated to the reverse engineering of such decisions, for
otherwise uninterpretable models. Though several explainability
methods have been adapted to the ranking problem, these solutions
produce simple rankings of terms in a given document, scored by
their influence on a model’s relevance judgement. However, these
saliency approaches fail to identify terms vital to maintaining a
positive relevance judgement. To this end, we propose the first
application of counterfactual explainability to the ranking problem,
in order to identify term subsets whose removal from a document
results in a non-relevant judgement. We build upon the SEDC coun-
terfactual explanation framework, and adapt novel solutions to
accommodate the challenges of indexing, ranking, and efficient
representation. We find that our explainability method consistently
discovers succinct and pertinent explanations, and in many cases, is
able to render themwithin several seconds. Despite our diverse eval-
uation, many choices specific to our implementation may influence
performance, leaving room for future work to explore alternative
indexing tools, ranking models, and datasets.
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1 INTRODUCTION
With the rise of deep learning in recent years, the use of deep neu-
ral networks has been explored for many aspects of information
retrieval (IR). Among other applications, deep learning has been
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used for ranking (known as learning to rank), query modeling, and
document representation. These applications have leveraged the
increasingly deep architectures proposed in the deep learning lit-
erature, which have grown both in computational complexity and
architectural complexity. While the increase in computational com-
plexity has been supported and enabled by proportional advances
in computer hardware, architectural complexity remains equally
complex to humans, especially for non-technical end users. Thus,
deep learning research in recent years has become increasingly con-
cerned with the interpretability of increasingly complex machine
learning models.

More concretely, the study of explainable artificial intelligence
(XAI) has emerged in recent years, with the goal of improving
the interpretability of artificial intelligence models through var-
ious types of explanations [5]. The explanations yielded by XAI
methods ultimately describe the decision-making process behind
an otherwise uninterpretable artificial intelligence model. When
sufficiently interpretable to enable understanding in non-technical
end users, XAI techniques enable many auditing use cases, such as
explaining unexpected decisions or bias exhibited by the model.

Although explainability has been popularized in the context
of artificial intelligence, many algorithms and software systems
that do not employ artificial intelligence may necessitate expla-
nations to enable interpretability. Indeed, traditional information
retrieval ranking models, such as BM25, are still popular, despite
using various statistics and heuristics over artificial intelligence.
More importantly, XAI is often motivated by a need to understand
black box models, in which the nature or characteristics of the
model are completely unknown. In this work, we present an ex-
plainability method that yields explanations for black box ranking
models, supported both traditional and learning to rank alike. For
arbitrary ranking models, our method explains why a document
was deemed relevant to a given query, and justifies its reasoning in
terms of document terms.

As opposed to the popular salience-based explainability meth-
ods, which have been adapted to the ranking problem in previous
works [17] [19], our method yields counterfactual explanations,
which have yet to be explored in the context of ranking. While
salience methods yield scores (ie. a ranking) for input features (ie.
document terms), counterfactual methods yield a minimal set of
features whose removal flips the model prediction (ie. relevant to
non-relevant). To help compute such explanations, we adapt the re-
cently proposed SEDC counterfactual explanation algorithm [9] to
the ranking problem, accommodating unique aspects of the ranking
problem such as relevance, indexing, and re-ranking.

In summary, our main contributions are as follows:

• We develop a counterfactual explanation method for ranking
models, the first of its kind, building upon the established
SEDC framework.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Examples of Counterfactual Explanations for CORD-19 (TREC-COVID) Queries

Query Sample Relevant Document Explanation

coronavirus origin { origin }
how do people die from the coronavirus { like, peopl, die }
what alcohol sanitizer kills coronavirus { utmost, investig, transmiss, sanit, alcohol }

coronavirus early symptoms { recov, 7, human, tract, data, symptom, earli }
coronavirus hydroxychloroquine { hydroxychloroquin }

difference between coronavirus and flu { flu }

• We formulate novel strategies to adapt counterfactualmethod-
ology to the ranking problem, solving inherent incompati-
bilities due to indexing, ranking, and representation.

• We perform an extensive evaluation of our method, across a
variety of datasets and ranking models, and adapt metrics
proposed in other works to the ranking problem.

2 RELATEDWORK
A wide variety of XAI research has emerged in recent years, and
has inspired efforts to provide explanations for otherwise uninter-
pretable black box models. Many taxonomies exist to characterize
these explanation approaches in different ways. As it concerns the
primary subject, models (be they AI models or otherwise), explain-
ability solutions can take form in inherently explainable models
or post-hoc explainability models. The former include highly inter-
pretable machine learning models, such as decision trees, while
the latter yields explanations by reverse engineering black box
(uninterpretable) models. In general, either form can be further
categorized into global or local explanations. Global explanations
provide insight into the general behaviour and decision-making
process of models, while local explanations describe how a single de-
cision (prediction) was made by the model. In this work, we develop
a local post-hoc explainability technique that explains relevance
predictions made by black box ranking models.

Perhaps the most significant distinction between local explain-
ability models is the format of the explanation itself. Popular ex-
plainability approaches have aligned with saliency or counterfactual
explanation methodologies. Among popular saliency methods are
the LIME [16] and SHAP [6] approaches, which aim to determine
scores for each feature in the prediction input. By contrast, coun-
terfactual explanations specify how the input must be be modified
in order to produce a different prediction [21] [9]. Several works
have studied counterfactual explanations more generally [21] [9],
as well as having applied them to a variety of problems [18]. Recent
counterfactual algorithms SHAP-C and LIME-C [15] have adapted
counterfactual methodology to textual and behavioural data, using
LIME and SHAP as search heuristics. These works build directly
upon the earlier efforts of the SEDC model [9], which bridged coun-
terfactual explanations to the realm of textual data. While useful
for IR datasets and corpora, several aspects of these recent methods
must be adapted for the ranking problem, which indeed is the novel
focus of our proposed solution.

In most works, counterfactual explanation methods expect a
subject model in the form of a binary classifier, allowing the ex-
planation algorithm to determine which feature subsets can be

removed (or modified) to flip the predicted class of a given sam-
ple. Often, minimal counterfactual explanations are desired, where
minimality is determined by the number of removed features, or
the distance between modified and original feature values. In our
work, we build upon the SEDC counterfactual explanation approach
[9], seeking minimally sized feature subsets that flip the model
prediction upon removal. In our adaptation of SEDC to ranking,
features are vocabulary terms (ie. words), used to explain rank-
ing model relevance judgements (ie. relevant vs. non-relevant) for
query-document pairs.

Among the general XAI approaches aforementioned, several
have been adapted to the ranking problem. Recent saliency expla-
nations techniques EXS [17] and LIRME [19] adapt Lime to the
explanation of pointwise ranking models. In contrast, our approach
adapts SEDC, and produces a counterfactual explanation. While
EXS and LIRME produce salience scores for vocabulary terms in
a query-document pair, our approach produces a set terms whose
removal renders a relevant document irrelevant. To the best of our
knowledge, only one other counterfactual effort has been explored
in the IR literature. The recently proposed ACCENT framework
produces counterfactual explanations for neural recommendation
models [18], and is a direct extension of the Prince [4] by several of
the original authors. While the recommendation problem is seman-
tically related to ranking, these approaches formulate explanations
in terms of actions performed by a user, such as purchasing or
reviewing an item in an online shopping recommendation system.
Our explanations are formulated in the context of text documents
and document ranking, and are strictly subtractive in their search
strategy. To the best of our knowledge, our approach is the first
counterfactual explanation technique dedicated to explaining query-
document ranking models.

3 COUNTERFACTUAL EXPLANATION FOR
RANKING

In this work, we focus on the problem of explaining document rank-
ings. More specifically, given a corpus of documents and queries,
we aim to generate explanations as to why a document was deemed
relevant to a query, by a given ranking model. Rather than justi-
fying the ranking with respect to the query terms, we specifically
justify the relevance of a selected document with respect to the
terms in the document.

Applying counterfactual methodology to this problem, we fur-
ther refine the formulation to specify the format of the explanation.
For a given document deemed relevant to a given query (by a given
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model), produce a subset of document terms whose removal ren-
ders the document non-relevant. Furthermore, since the number
of possible solutions is exponential in the number of unique terms,
produce a fixed set of such solutions while seeking those with
minimal size (ie. the fewest number of terms removed).

In Table 1, we list a sample of queries from the COVID-19 Open
Research Dataset (TREC-COVID) [20, 22], alongside the counter-
factual explanation generated by our algorithm for their highest
ranked document. From these explanations, many interesting trends
can be inferred about the ranker and corpus documents. For ex-
ample, the top ranked document for query "how do people die
from the coronavirus" is relevant due to the presence of key terms
"peopl" and "die", though terms common to all documents, such
as "coronavirus", are not found to be salient. In the query "what
alcohol sanitizer kills coronavirus", many terms are implicated in
the explanation in addition to those derived from the query. This
suggests that the ranker was particularly lenient in its assessment
of relevance, selecting documents that contained relatively few key
terms.

4 METHOD
In the following subsections, we describe the components of the
proposed ranking explanation system. At a high level, an index is
created to provide access to a selected corpus of documents and
queries. A predefined ranking model is instantiated, which is em-
ployed to generate initial top-k document rankings for all queries in
the index. Document-query pairs are drawn from the index, and are
ultimately passed to the SEDC algorithm to be explained. To gener-
ate counterfactual explanations, the SEDC algorithm invokes the
ranker repeatedly using an in-memory re-ranker, which re-ranks
the top-(k+1) documents, each time substituting the document be-
ing explained with a perturbed copy.

4.1 Indexing
In the first step of our explanation pipeline, an index is built to
facilitate efficient storage and retrieval of documents and queries,
among other dataset artifacts. To build and interact with this index,
we employ the PyTerrier library [8], a Python API for the popular
Terrier retrieval platform [12]. The datasets used in our experiments
are obtained using the ir_datasets library [7], which provides an
interface to load a variety of popular benchmark datasets into
PyTerrier.

As it concerns our framework, the Terrier indexing process con-
structs a list of documents 𝐷 and a list of queries 𝑄 . Documents
and queries are made available for random access via the PyTer-
rier API, whom achieves this by assigning documents and queries
unique identifiers 𝑑 ∈ [0, |𝐷 | − 1] and 𝑞 ∈ [0, |𝑄 | − 1], respectively.
Therefore we denote the document with id 𝑖 as 𝐷 [𝑖], and the query
with id 𝑗 as 𝑄 [ 𝑗]. Our work adopts a bag-of-words representation
for documents and queries, thus each element of 𝐷 and 𝑄 is an
unordered list containing all unique terms present.

Through the PyTerrier API, a list of document terms (vocabu-
lary) is made available for random access as well. Each term in the
vocabulary 𝑉 is stored at a unique index 𝑣 ∈ [0, |𝑉 | − 1], there-
fore 𝑉 [𝑘] denotes the term with implicit identifier 𝑘 . We remove
morphological and inflexional endings (ie. suffixes) from words, by

allowing Terrier to apply an implementation of the Porter Stemming
algorithm [14] during the initial indexing process.

In addition to the indexed data made available by PyTerrier, we
extract and process certain data required for efficient manipulation
by SEDC. The document and vocabulary lists 𝐷 and 𝑉 enable the
creation of a sparse document corpus, a |𝐷 |𝑥 |𝑉 | matrix𝑀 denoting
the bag-of-words representation for |𝐷 | documents. This matrix is
composed of 0 and 1 values, as defined in Equation 1, which denote
the presence or absence of a term in a given document, respectively.
This matrix facilitates random access extraction of sparse document
representations, which are essential to the tractable exploration of
large corpora.

𝑀 [𝑖, 𝑘] =
{
1 𝑉 [𝑘] ∈ 𝐷 [𝑖]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

4.2 Ranking
In this work, we consider ranking models that output top-k rank-
ings. While previous saliency-based explanation approaches for
ranking have focused on pointwise learning-to-rank rankers [17]
[19], our solution is deliberately agnostic to the underlying model
architecture. Our method supports any ranking model that pro-
duces a list of top-k documents 𝐷𝑘

𝑞 for a given query 𝑞. However,
the SEDC counterfactual explanation algorithm will re-rank re-
peatedly, in order to find counterfactual explanations for a given
document. Therefore, the chosen ranker should support efficient
re-ranking capable of circumventing index recompilation.

In keeping with their typical definition, counterfactual methods
such as SEDC explain the predictions of binary classifiers. In a
document ranking problem, documents are assigned numeric scores
(ranks) with respect to a given query, thus in order to treat the
ranking model as a binary classifier, each score must be mapped to a
binary variable. Naturally, we impose a transformation to discretize
scores into relevance assessments (ie. relevant or non-relevant).
We utilize the Top-k Binary relevance transformation suggested in
recent works for saliency-based ranking explanations [17].

Let 𝑅(𝑞, 𝑑) be a function that yields the ranking model score
for a given document 𝑑 , with respect to 𝐷𝑘

𝑞 . Let 𝑋 be a random
variable representing the relevant or non-relevant outcome for 𝑑 .
As defined in Equation 2, a document is deemed relevant only if
the model ranks the document among the top-k documents, for
some predefined query and 𝑘 value, and is deemed non-relevant
otherwise.

𝑃 (𝑋 = 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 |𝑞, 𝑑, 𝑅) =
{
1 𝑅(𝑞, 𝑑) ≥ 𝑅(𝑞, 𝑑𝑘 )
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

In our experiments, we employ PyTerrier once again for ranking.
Terrier supports an extensive variety of traditional weighted rank-
ing models out of the box, which can be used to generate a baseline
ranking, and in turn, an in-memory re-ranked ranking, The Terrier
team has made available several extensions that implement various
deep learning (DL) learning-to-rank models, which may also be
integrated in the re-ranking stage, though we leave this integration
for future work.
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4.3 SEDC
Until recently, counterfactual explanation methods were generally
incapable of interpreting textual data, such as document corpora.
In such cases, a unique feature is required for each term in the
corpus vocabulary. Previous counterfactual approaches have been
enabled by considering only a small, finite set of binary features,
however the vocabulary (feature) space necessary for textual data
is orders of magnitude larger. The SEDC approach was the first to
solve this issue, and therefore facilitate explanation of textual data.
SEDC utilizes sparse document representations, which efficiently
denote vocabulary terms present in a given document, and thereby
support tractable explanation (in particular, tractable exploration
of the feature powerset). Intuitively, this approach utilizes a bag-of-
words representation, by means of sparse matrices and vectors.

To generate a local explanation for a given document-query pair,
SEDC must navigate a large search space, defined as the powerset
of words contained in all documents. To explain a given document,
SEDC reduces this initial set of words to those contained in the
document itself. As a feature subset of minimal size is preferred, the
general algorithmic approach involves iterating through subsets of
increasing size, beginning with all feature subsets of size 1. For each
subset, all terms in the subset are removed from the document being
explained, which is subsequently ranked again to test for non-rel
judgement. This secondary ranking process is described in more
detail the following subsection. This algorithm guarantees that
the first non-rel judgement constitutes a minimal counterfactual
explanation, though its complexity is exponential in the number of
document terms. SEDC incorporates several heuristics to reduce
this complexity, namely to prune the search space, and to guide the
search via local improvement calculation.

4.4 Generating Explanations
Before generating explanations, several configuration settings are
established, namely the value of k (ie. top-k), the dataset, and the
ranking model. The selected dataset is indexed using PyTerrier,
and as described, is used to create the sparse document corpus.
The ranking model is invoked to generate a base ranking 𝐷𝑘+1,
denoting the top-(k+1) documents for each query 𝑞 ∈ 𝑄 , 𝐷𝑘+1

𝑞 .
Our SEDC explanation algorithm proceeds with the generation of
explanations, one query-document pair at a time, making sure to
utilize the sparse representations.

For each pair, SEDC iterates the powerset of document terms
as described previously, and assesses the relevance of each modi-
fied document copy (ie. subset of document terms). The efficient
determination of relevance is achieved by recalling 𝐷𝑘+1

𝑞 for the
current query 𝑞. Since the original document being explained, 𝑑 ,
was deemed relevant, 𝑑 ∈ 𝐷𝑘+1

𝑞 . We allow SEDC to modify 𝑑 as
described, removing terms from its sparse bag-of-words represen-
tation. The modified document, 𝑑 ′, is substituted in place of 𝑑 , and
the resulting set of k+1 documents is re-ranked using PyTerrier’s
in-memory TextScorer re-ranker. The relevance of 𝑑 ′ is calculated
in the context of the new ranking 𝐷 ′𝑘+1

𝑞 , as specified in Equation
3. The modified document 𝑑 ′ is no longer relevant if it no longer
ranks among the top-k documents (as 𝑑 did).

Table 2: Experiment Datasets

Dataset # Documents # Queries
NFCorpus (dev) 5.4K 325
CORD-19 (TREC-COVID) 193K 50
WikIR (en1k test) 370K 100
MSMARCO Document (dev) 3.2M 5.2K

𝑃 (𝑋 = 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 |𝑞, 𝑑 ′, 𝑅) =
{
1 𝑅(𝑞, 𝑑 ′) ≥ 𝑅(𝑞, 𝑑𝑘 )
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

After finding one or more modified documents with minimal
modification, SEDC outputs all found explanations, along with
their computation time and other statistics. Finally, the size of
the smallest explanation is also reported, known formally as the
switching point [11], for use in our experiments.

5 EXPERIMENTS
In this section, we describe the experiments performed, including
the metrics for evaluating counterfactual explanations, datasets
used, and trends observed in the results. Since, to the best our
knowledge, our approach is the first counterfactual explanation
method for the ranking problem, our experiments are unable to
compare trends and performance with other methods. In lieu, our
experiment profiles our method and the explanations generated, by
adapting metrics established in the counterfactual explainability
literature. We execute all experiments on a Linux server running
Ubuntu 18.04.5 LTS, with 2x Tesla P40 GPUs, then write and run
all code using Python 3.6.9.

5.1 Metrics
To benchmark our explanation method, we considered several met-
rics proposed in the literature, across various applications of coun-
terfactual explainability which have yet to standardize any eval-
uation metrics. In addition, many metrics proposed are specific
to certain types of data, such as numeric or categorical. Not all
counterfactual applications limit their exploration of perturbed in-
stances to subtractive perturbation, thus several proposed metrics
attempt to capture the magnitude of feature modifications, which
simply do not occur in other approaches.

Several metrics are proposed in the paper introducing the DiCE
explanation tool [10]. The proposed validity metric measures the
fraction of explanations which are in fact counterfactuals, however
all explanations returned by our method are valid counterfactuals.
Sparsity and proximity metrics are also proposed, which aim to
capture the number of features that have changed, and by how
much, respectively.

Since our method only removes, but does not modify features
(document terms), a straightforward adaptation of the proximity
metric is not inherent for our adaptation to textual data. However,
the sparsity metric can be directly observed via the number of
removed features. An equivalent metric known as the switching
point has been established and utilized in other works [11] [15],
and will serve as the primary indicator for explanation quality in
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our experiment. This metric directly rewards explanations for re-
moving fewer features, which not only results in more concise (and
therefore interpretable) explanations, but also penalizes trivial ex-
planations that are prohibitively destructive (eg. an explanation that
removes all features would render a document non-relevant, but
this is no revelation). Additionally, we measure the performance of
our method through the time required to generate each explanation.

5.2 Rankers and Datasets
To gauge performance, we run experiments with several ranking
models and datasets. In particular, we use the BM25 and PL2 tra-
ditional ranking models, along with four datasets of various size
summarized in Table 2. The BM25 and PL2 weighting models incor-
porate different statistical calculations, and may therefore exhibit
different behaviours and tendencies that can be explained. The va-
riety in dataset sizes helps to identify performance limitations and
boundaries for our method, as well as how performance changes
with respect to top-k value.

When measuring switching point, we evaluate our method for
BM25 and PL2 rankers on the CORD-19 (TREC-COVID) dataset
[20, 22], as well as the WikIR (en1k test) dataset [2, 3]. To measure
computation time, we also evaluate our method against the NF-
Corpus (dev) [1] and MSMARCO Document (dev) [13] datasets. In
the experiments, we select a predetermined sample of 50 queries
set aside in each dataset, guaranteeing that all tests on a given
dataset evaluate the same query-document pairs. Furthermore, we
select the top-ranked document for each of the 50 queries, resulting
in 50 total explanations for each experiment. Each experiment is
parameterized by a value of k (ie. top-k), a dataset, and a ranker.

5.3 Results
5.3.1 Switching Point. As it concerns switching point, our method
maintains an average explanation size between 1 and 2 terms, for all
tested values of k. These results are summarized in Table 3, which
illustrates a clear linear correlation between the value of k and the
mean switching point. This trend is intuitive, since it becomes more
difficult for a document to be deemed non-relevant as k increases
towards |𝐷 |, at which point all documents are deemed relevant.
Therefore, we empirically find that, as k increases, more salient
terms must be removed in order to solicit a non-relevant assessment
by the ranker.

Although not denoted in Table 3, all switching point median val-
ues remain at exactly 1. This indicates that, across all tested top-k
values, the majority of explanations have the minimum possible
size of 1 term. In other words, several outlier explanations inflate
the average towards 2 terms in tests with larger top-k values, how-
ever the majority of explanations remain unchanged with respect
to k. This is supported by another clear trend, in which the stan-
dard deviation generally increases as k increases. In both datasets,
the increasing standard deviation reflects the growing presence of
outliers, though rarely to extremes past 2 terms.

5.3.2 Computation Time. Evaluating the performance of our ex-
planation method, we observe significant variance in computation
time depending on the dataset and value of k. This variance is clear
across our experiment results, listed in Table 4. For MSMARCO,

Table 3: Switching Point Results

Dataset Top-k Ranker Mean Std. Dev.

CORD-19
(TREC-COVID)

top-1 BM25 1.000 0.000
PL2 1.000 0.000

top-10 BM25 1.000 0.000
PL2 1.300 1.269

top-50 BM25 1.400 1.497
PL2 1.563 1.306

top-100 BM25 1.633 1.746
PL2 1.957 1.856

WikIR
(en1k test)

top-1 BM25 1.000 0.000
PL2 1.000 0.000

top-10 BM25 1.082 0.566
PL2 1.082 0.566

top-50 BM25 1.553 1.699
PL2 1.979 2.274

our largest dataset, computation only completed in the top-1 exper-
iment, while the CORD-19 experiments experienced no such issues.
Other larger experiments did not complete as well, and are denoted
as "N/A" in Table 4. In these cases, the Terrier platform simply
crashed and was unable to continue, due to resource constraints.

While the number of documents in theMSMARCO corpus greater
than the others by orders of magnitude, as reported in Table 2, we
note that the number of documents |𝐷 is not the sole culprit of in-
creased computation time. NFCorpus contains orders of magnitude
less documents than the other datasets, yet fails to handle top-50
or top-100 experiments. Intuitively, the impact of the number of
documents and queries can be ruled out, due to the fact that SEDC
explains only a single query-document pair at a time.

We hypothesize that the distribution of corpus document sizes
is the predominant static factor behind computation time, which
would be multiplied by the computational efficiency of the rank-
ing model itself. Given the wide variety of ranking models in the
literature, performance could vary wildly, just as they would in
real-world search engines. In our implementation, the re-ranking
process performed repeatedly by PyTerrier (at the request of SEDC)
may be less efficient than other ranking models whom choose to
(re-rank) in different ways. In spite of these factors, top-1 and top-
10 experiments yield explanations for a query-document pair in a
matter of seconds, in as few as 2 seconds, or as many as 83.

In Figure 1, the distribution of computation time with respect
to k is plotted, highlighting several trends. With larger values of k,
the median computation time increases, as expected, however the
variance also increases proportionally. Outlier explanations with
wildly varying computation time become more common, meaning
that many documents retain small explanations, and many neces-
sitate larger. In general, the computation time appears to increase
superlinearly with increasing k, which reflects the ability of the
ranking model to scale with k.

6 CONCLUSION
In this paper, we set out to create the first model-agnostic local
counterfactual explanation method for ranking model assessments.
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Table 4: Average Computation Time

Top-k CORD-19 WikIR NFCorpus MSMARCO
top-1 2.011 2.484 9.701 32.388
top-10 3.639 9.197 51.366 N/A
top-50 25.168 68.778 N/A N/A
top-100 82.693 N/A N/A N/A

Figure 1: Computation Time for Increasing Top-K Values.

Although several explainability methods have been proposed in
the XAI literature, few standards exist within this relatively new
area of study. Fewer yet are those that incorporate a counterfactual
approach, as opposed to the popular saliency-based approach, or
those capable of handling textual data. These challenges are the
primarymotivation of this paper, though are equallymatched by the
difficulties of adapting counterfactual explanations to the ranking
problem. We aim to adapt existing counterfactual algorithms for
ranking models, as opposed to the generic AI classifiers assumed
in most XAI works, as well as to adapt metrics and formulations
from the literature.

In specific, we present a novel adaptation of the SEDC counter-
factual explanation algorithm for ranking models. To enable this
unique application of XAI, we build a framework to adapt the rank-
ing problem to binary classification, in order to interface with a
tool that is primarily intended for simpler AI classifiers. We present
solutions for additional complexities unique to the ranking problem,
such as indexing and the efficient representation of textual data. In
addition to this formulation, several experiments are performed to
evaluate our method, using metrics adapted from other applications
of counterfactual XAI.

We find that, across several datasets of vastly different size and
scale, the vast majority of counterfactual explanations produced
by our method maintain a minimal size of 1 document term, guar-
anteeing concise and meaningful insights for non-technical users.
The computation time of our method does vary greatly for different
top-k values, and appears to increase superlinearly with increasing
k. Despite this growth, explanations are generated within several
seconds in many cases, especially for top-1 or top-10 experiments.

By virtue of being the first adaptation for the ranking problem,
we identify many challenges for the generation of counterfactual
ranking explanation in future work. Although explanations main-
tain minimal size in most of our experiments, more work is required
to understand and reduce the computational time, in order to enable
use by potentially impatient non-technical users. In specific, other
indexing platforms, ranking model frameworks, and ranking model
architectures should be explored, and could easily be substituted
within the broader framework we have created. Many other promis-
ing counterfactual methods from the XAI literature claim to offer
improvements over SEDC, such as the recent SHAP-C and LIME-C
textual counterfactual algorithms [15].

In addition to other promising algorithms, we believe thatmetrics
from other counterfactual works could be reformulated for textual
data, or for the ranking problem more specifically. For example, the
proximity metric [10] measures how significantly each (numerical
or categorical) explanation feature was modified, however a similar
distance could be derived for textual data using edit distance. Indeed,
incorporating proximity necessitates a counterfactual approach
that permits feature modification, rather than removal alone. This
alternative could make for interesting future work, however it is
unclear term modification is a reasonable explanation in a retrieval
context.
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