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Abstract

In an attempt to better understand the genetic nature of cancer, researchers
are employing machine learning algorithms to aid in identifying patterns and
correlations invisible to the human eye. In this paper, we aim to analyze and
learn using sample data from patients experiencing various stages of bladder
cancer. We begin by discussing the difficulties in using the cancer dataset, and
how the imbalance or unequal distribution of the samples makes accurate predic-
tive classification extremely difficult. Due to the large range of specific bladder
cancer stages, we determine that correlation is infrequent and at times illogical.
More insight between specific cancer subtypes is, in comparison, much more
accurate, and is the basis for our proposed solution to the multi-class problem.
With the help of Feature Importance algorithms, Random Forest classification
models and some ingenuity, we can identify genes that are statistically charac-
teristic of the various subtypes of this form of cancer. By treating the cancer
stages as classes for the genetic data, almost sixty thousand sampled genetic
biomarkers can be ranked as important indicators or completely meaningless.
Moreover, we investigate the procedure of dimensionality reduction, which in
combination with feature selection, yields the hypothesis that a shocking amount
of the given genetic data is statistically uncorrelated with any type of bladder
cancer.



1 Introduction
With the intent of discovering insight into the nature of bladder cancer, this pa-
per presents a research findings using machine learning analysis and techniques.
Using a dataset of genetic biomarkers from a small sample of diagnosed patients,
we allow mathematical algorithms to determine important information easily
overlooked by the human eye. In our research, we will use the Scikit-Learn and
Weka machine learning libraries and tools to format, preprocess, feature select
and classify the samples in question. This research aims to solve the problem
of identifying meaningful biomarkers as they relate to certain stages (classes)
of bladder cancer. Along the path to attaining this information, our research is
met with several smaller, machine learning dilemmas, to be discussed. We will
consider the machine learning feature selection procedure to be instrumental
in discerning the important biomarkers, while these smaller problems including
classification, rebalancing and the multi-class problem will help to support and
obtain that information.

2 Bladder Cancer
In order to fully understand the nature of the bladder cancer dataset we will
be analyzing, we must first establish an interpretation and definition of bladder
cancer and its identifiable forms. Bladder cancer is a specific form of cancer,
defined as a deadly disease involving abnormal cell growth that may spread and
invade others parts of the human body [1]. Bladder cancer, in specific, originates
from the bladder of the subject. When a patient has been diagnosed with
bladder cancer, doctors begin the process of staging, the task of determining
how far the cancerous cells have spread in the body. Furthermore, a specific
stage of the cancer is established, representing the extent of the spread [2]. The
stage is a vital factor in deciding treatment and likelihood of success, and is thus
understood to be a valid classification of bladder cancer samples. For the scope
of this paper, samples of bladder cancer subjects are categorized and labelled
by their specific, standardized stage. The given dataset presents few samples,
with various different specific stages. Before we can employ machine learning
techniques to analyze the data, proper interpretation and formatting must be
explored in the context of the bladder cancer data.

3 Interpreting the Dataset
From a logical standpoint, the bladder cancer dataset contains genetic samples
from sixty patients suffering from the disease. For each patient sample, the
stage of their cancer is given according to the TNM staging system established
by the American Joint Committee on Cancer [2]. Approximately fifty-eight
thousand of the same, labelled genetic biomarkers are observed for each sample.
The values given for each biomarker represent the amount of cellular activity
occurring at the molecular level. With this data, the remainder of this paper

1



focus on interpreting the genetic information, looking for correlations between
stages and certain biomarkers, and determining which genes have no influence
in particular stages. The stages assigned to each sample describe themselves
using the letter T, which in combination with a given number, describes how
far the original tumour has grown through the bladder wall (possibly into nearby
tissues) [2]. Each T sample gives several alphanumeric characters to describe
itself. However, in an attempt to find commonality and correlation between the
samples, we must group them into sufficiently large groupings. To perform the
analysis detailed in this paper, samples were grouped into the following three
dominant subgroups:

1. Ta - Non-invasive papillary carcinoma, where growth has reached hollow
center of bladder but not the connective tissue or bladder wall.

2. T1 - Growth into the layer of connective tissue under lining layer of blad-
der, but not reaching the bladder wall muscle.

3. T2 - Growth has reached the inner or outer muscle layer of the bladder
wall, but has not breached the fatty tissue surrounding bladder.

With each successive stage in the sequence Ta, T1, and T2, the observed
cancerous cells have spread more.

3.1 Formatting
To format the data, the labels (stages) of the sixty classes were truncated to
simplify the classification to the three groups aforementioned. Of the sixty sam-
ples, twenty-seven are Ta, twenty-three are T1 and eight are T2 stage. Two Ti
samples were discarded due to their lack of representation and decision of scope
for the machine learning analysis. In our research, we have utilized the Scikit-
Learn machine learning library for the Python programming environment. As
such, the primary dataset is read by our program, which reorganizes the into an
array of genes (the machine learning features or parameters), a two-dimensional
array of sample data (samples) and an array of cancer stages (labels). The
NumPy scientific computing package for Python is used, allowing the data to
be stored, written to and manipulated in the most efficient manner. To add
perspective, the Weka machine learning tool was used in tandem to verify and
perform operations. The performance and results throughout this paper will
cite the tool used to obtain the data.

4 Inherent Dataset Problems
Upon initial observation, the dataset is quite irregular. With only 58 samples,
the feature space containing 57,820 features is overwhelmingly large. From a
machine learning perspective, training an algorithm with limited samples in-
curs bias and variance in the performance of the classifier, relative to the same
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process trained with an infinite sample size [3]. Moreover, this dilemma is a
limiting factor in determining the most effective features. To further compli-
cate matters, the distribution of classes among all 58 samples is imbalanced. In
machine learning, much bias can be introduced when this issue is unaccounted
for. This class imbalance leads to overfitting, due to a lack of representation
for all classes equally. To work around this, our research investigates different
approaches to handling this multi-class problem. Most importantly, by tackling
these problems, we are able to address the primary objective of this research:
identifying meaningful biomarkers and their influence in bladder cancer stages.

4.1 Curse of Dimensionality
Undoubtedly, the most challenging aspect of analyzing the bladder cancer dataset
is the overshadowing feature space size in comparison to the number of sam-
ples. It is known that machine learning classification ideally expects the lowest
feature space size to sample size ratio possible. When this ratio is much larger
than 1.0, the problem is susceptible to The Curse of Dimensionality (Bellman,
1961). This designation refers to the fact that the convergence of any estimator
to the true value of a smooth function defined in high dimensional space is ex-
tremely slow, taking exponentially longer with larger dimensional space [4]. The
bladder cancer dataset will unquestionably suffer in classification performance
as a consequence of this problem. More evidence of this issue is discussed in
the Classification section. In the established study of machine learning, few ac-
cepted methods exist to aid in handling this circumstance. Although no single
method may necessarily improve classification accuracy, solutions may include
the following:

• Feature selection - The process of selecting an optimal subset from the
original feature set.

• Dimensionality Reduction - The process of reducing or compressing the
feature space, mapping a higher dimensional space onto a lower one.

• Gathering more sample data to increase the sampling size

Thanks to the importance of feature selection in finding meaningful biomark-
ers, we investigate feature selection not only as a method of reducing the feature
space, but in ranking the most important features. This feature ranking and
selection process is discussed in the Feature Selection Problem section.

4.2 Imbalanced Classes
Similarly to the uneven ratio of features to samples, the poor distribution of
represented classes in the given samples also hinders the performance of clas-
sification and machine learning analysis. This situation refers to the sample
data as being imbalanced, meaning that the samples do not represent all classes
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Figure 1: A confusion matrix from a sampled run of the SVM classifier with
RBF kernel function. The vertical axis represents the true classes, while the
horizontal axis represents the corresponding classes predicted by classifier.

equally [5]. In our bladder cancer dataset, there are a significantly smaller num-
ber of samples classified as T2 (only 8), in comparison to the relatively similar
numbers in the remaining classes (23 and 27). Due to this misrepresentation,
most classifiers will optimize accuracy by predicting most samples to be of the
class which is best represented, thus yielding the highest performance accuracy.
There exists several well known countermeasures to deal with this scenario [5]:

• Collect more data to boost under-represented classes

• Additive or subtractive dataset resampling

• Generating synthetic samples

• Try classifiers that work better with imbalanced data

• Penalized classification

This problem is the basis for discussion of the Multi-Class Problem, to follow.
In an attempt to achieve notable accuracy, several of the aforementioned tech-
niques are documented in the Classification section. In addition to classification
of all classes, our research attempts to evaluate between-class classification per-
formance using subsets of the original data. Thus, a deeper understanding of
relationships between specific cancer stages is presented.

4.3 Overfitting
Due to the lack of class distribution and sample size, the bladder cancer dataset
is prone to overfitting. Overfitting occurs when, due to a lack of broad, gener-
alized data for each class, a model is fit too closely to be considered accurate.
In the dataset, the overshadowing of Ta samples largely influences most mod-
els to classify all samples as this class. For example, in Figure 1, we see the
performance evaluation of an SVM RBF classifier through accuracy score and
confusion matrix. In this example, the overfitting is visible by the fact that every
sample has been classified as the majority class. The accuracy corresponds al-
most exactly to the percentage of these majority samples in the original dataset.
With more investigation, we determined that this problem still exists despite
drastic dimensionality reduction and feature selection, consistently overlooking
the minority T2 samples.
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5 The Multi-Class Problem
As described in Interpreting the Dataset, our research examines the bladder
cancer samples from the perspective of belonging to one of three classified stages.
Classification of the dataset now falls into the category of being a Multi-Class
Problem. This is defined as being a machine learning problem that is to analyze
a dataset where samples each belong to a single class, but there exists more than
two classes across all samples [6]. Solving this problem is one of the primary
objectives of our research. We’ll consider two popular solutions that attempt to
solve this problem by essentially transforming the dataset into a binary (class)
problem:

1. One-Vs.-All - Train a single classifier on each class, treating samples of
that class positive and other negative.

2. One-Vs.-One - Fit one classifier for every possible pair of classes, while
using a voting algorithm to decide class.

With the Scikit-Learn library, all classifiers are already equipped to per-
form multi-class classification [7]. Although we will evaluate and compare
performance of these inherently multi-class classifiers, we will also utilize the
sklearn.multiclass class to wrap regular classifiers in meta-estimators corre-
sponding to the mutlti-class solutions listed above. This class facilitates im-
proved accuracy for multi-class problems by allowing One-Vs.-All and One-Vs.-
One algorithms to parameterize their base classifiers. This solution is described
in the Classification Problem section.

5.1 Fixing the Imbalance
As a first step in achieving reasonable classification accuracy, the distribution
of samples had to be equalized by class. In the Scikit-Learn research, a cus-
tom algorithm was written to implement a typical SMOTE (Synthetic Minority
Over-Sampling Technique) resampler. This method duplicates minority samples
to normalize class distribution, while avoiding any bias of allowing samples to
co-exist in the cross-validation train and test sets simultaneously. In the Weka
experiment, the Resample Filter was used to perform this operation. Immedi-
ately following application, the resampling increased classification accuracy by
almost 30% for the tested classifiers. As seen in Table 2, the superior Random
Forest classifier saw an increase from 51.72% to 84.48% by this process alone
This experiment pitted five unique classifiers against each other, showing their
accuracy in three stages. The dramatic increase is a testament to the severity of
this issue in our bladder cancer dataset, however it proved to be easily accounted
for.

5.2 Inter-Class Separation
In an alternative take on the multi-class problem, the dataset was manually sep-
arated into binary class sets, where the dataset would contain samples belonging
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to only two classes. Specifically, new datasets were produced for T1 vs. T2, and
Ta vs. T1. This approach allows important insight to the classification prob-
lem, where we may better understand the difference between cancer stages more
effectively than when considered together. More importantly, inter-class sepa-
ration allows us to discover meaningful biomarkers via feature selection from
reduced sample space. By reducing to binary problems, the biomarkers that
most significantly identify and differentiate between two stages of bladder can-
cer are effectively calculated. In Table 3, the accuracy of the eventual Random
Forest classification of these cases is given. Although we obtain fair accuracy
when evaluated over all three classes, increased accuracy and insight is gained
by taking this explorative approach.

6 Feature Selection Problem
Combined with the role of resampling, feature selection is undoubtedly the
most integral component of accurate classification using this dataset. With
almost sixty-thousand features, classifiers will have difficulty correlating and
finding patterns. Feature selection is the method by which we chose to reduce
our feature space, in in doing so, determine the most important biomarkers.
To facilitate optimal selection, scoring algorithms were chosen and evaluated
comparatively to determine the best ranking.

6.1 Information Gain
The clear winner of those selected, Information Gain is able to produce a rank
for every feature in the feature space, specifying how important it is in the
context of the dataset [8]. Using this algorithm, the feature set scored 252 non-
zero scores, effectively eliminating almost every feature. From these, various
combinations were tested. After much research, the top three were selected and
used. As seen in the figure below, Information Gain yielded the best classifier
accuracy when applied.

6.2 Pearson Correlation
Using the Weka CorrelationAttributeEval class, we attempted to rank features
by means of Pearson’s correlation coefficient. This is a popular ranking algo-
rithm in Weka, and it performed well when applied to the dataset. Of almost
58,000 features, Pearson Correlation effectively reduced the feature space to
8602 features by scoring the remaining features 0.

6.3 Recursive Feature Elimination
Using Scikit-Learn’s RFE ranker from the feature_selection class, a list of
the top ranked features was calculated over a lengthy amount of time. This
algorithm works by recursively considering increasingly smaller sets of features
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Table 1: Feature Selection Comparison (Random Forest Classifier)
Scoring Method Optimal Top K Top K Ranked Genes Accuracy

Information Gain 3
ENSG00000143970.12
ENSG00000169756.12
ENSG00000130299.12

91.37%

Pearson
Correlation 6

ENSG00000165055.11
ENSG00000175414.6
ENSG00000117868.11
ENSG00000140830.4
ENSG00000168259.10
ENSG00000100393.9

86.21%

Recursive Feature
Elimination 3

ENSG00000005156.7
ENSG00000005810.13
ENSG00000029363.11

74.14%

Chi^2 3
ENSG00000065361.10
ENSG00000113522.9
ENSG00000143799.8

75.86%

for eventual selection, by means of recursion [9]. This algorithm took the longest
of all, and in turn, lacked in applied classification accuracy.

6.4 Chi^2
As a final scoring metric, the Chi^2 scoring function was used in our Scikit-
Learn analysis. After the top features were generated, they too were judged
alongside others for classification accuracy. This function was chosen due to its
ability to measure dependence between stochastic variables [10], meaning it will
only work with only non-negative features.

6.5 Evaluating the Best Scoring Algorithm
In a matter of extreme importance, the scoring method selected is the primary
factor in the decision of important biomarkers. To compare these functions, we
put them to the test in a Random Forest classifier, with the dataset adjusted for
resampling. Using the confusion matrix and accuracy scores, Information Gain
was determined to be the most reliable and accurate scoring method for the
feature selection process. Moving forward, Information Gain’s feature ranking
is applied in all three cases of the multi-class problem. After much testing, it
was decided that the top three features from this ranking be selected for optimal
accuracy. The results of our comparison are given in Table 1, along with the
relative performance and selections for each.
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Table 2: Random Forest classification accuracy in preprocessing stages
No Resampling
No Feature Selection

Resampled
No Feature Selection

Resampled
Feature Selected

Random Forest 51.72% 84.48% 91.38%
SVM RBF 46.55% 81.03% 81.03%
SVM Linear 29.31% 74.14% 46.55%
Naive Bayes 46.55% 65.52% 67.24%
Bagging 50% 68.97% 74.14%

7 Classification Problem
Several attempts at improving initial classification of the dataset were made
through using a variety of classifiers. Support Vector Machine (SVM), Random
Forest (RF), K Nearest Neighbour (KNN), and numerous tree classifiers were
tested. Although initial attempts before preprocessing produced shameful re-
sults, it was clear even at this point that SVM and RF were likely most effective.
By means of preprocessing, performance was increased to impressive levels. Be-
fore rebalancing, SVM classified with constant 43% accuracy due to overfitting.
Due to the imbalance problem, most classifiers would originally classify all sam-
ples as Ta, the largest class. Several SVM kernels are detailed below, however
their performance almost never improves after feature selection. To provide
context, Random Forest and SVM RBF were compared against several other
relevant classifiers

7.1 SVM
Upon initial classification with no feature selection or resampling, SVM classi-
fiers yielded a constant accuracy, regularly below 50%. This was also the case
with the linear kernel SVM. These results make sense for the dataset because
there are three distinct class, and without manipulation, RBF and Linear SVMs
(compatible only with One-vs.-One scheme) are unable to properly classify. A
number of problems were tackled in order to produce better results. As dis-
cussed in the Feature Selection section, ranking algorithms were used to obtain
a small amount of meaningful biomarkers. After this, the samples were rebal-
anced (as described) to address the imbalance problem. Linear and RBF SVMs
were then tested using a One-vs-One algorithm. Notably, the linear SVM was
able to obtain an accuracy of 83.4%, outperforming the RBF. Although sur-
prising, this occurred because linear kernels are the only inherently compatible
kernels for SVM in Scikit-Learn’s feature selection class. Moreover, after suc-
cessfully and drastically reducing the feature space, the data was more simply
split in a linearly split fashion than before this procedure.
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Table 3: Meaningful Biomarkers determined using Random Forest, Information
Gain

Classification Top Biomarkers RF Accuracy

Ta vs. T1 vs. T2
ENSG00000143970.12
ENSG00000169756.12
ENSG00000130299.12

91.38%

Ta vs. T1
ENSG00000231822.1
ENSG00000051180.12
ENSG00000255438.2

92.00%

T1 vs. T2
ENSG00000156968.8
ENSG00000157764.8
ENSG00000236051.2

96.77%

7.2 Random Forest
Among others, Random Forest (RF) was evaluated on identical conditions to
other classifiers. Without any doubt, classifiers from Scikit-Learn and Weka’s
tree class outperformed all other classifiers at all stages of the research. With
Scikit-Learn, several tree classifiers were tested from this class. Shown below,
the Extra Trees Classifier (ET) yields accuracy of 83.4% on resampled, feature
selected data. Due to their ability to fit a number of randomized decision trees
using samples and averaging, tree classifiers are able to regularize to compensate
for overfitting in a way other classifiers will not. Using the Weka environment,
the Random Forest classifier with default parameters was determined to be the
most accurate and correct classifier of all throughout the research. Using the
Weka resampling filter and Information Gain ranking discussed above, 91.38%
accuracy was achieved, as seen in Table 3.

7.3 Performance
As shown in Table 2, Random Forest classifier performs the best at all stages
of the processing pipeline. After resampling and paired with Information Gain,
it has proven to be the most accurate. More evidence of this can be seen in
the screenshots and source files from the research. Having established the best
classifier, resampler and feature selection algorithm for optimal performance, we
now have the tools necessary to extract and calculate the meaningful biomarkers
from the original bladder cancer dataset.

8 Important Biomarkers
To obtain the most accurate perspective on the most important features, several
processes have taken place. As discussed, the data was preprocessed by resam-
pling to balance the class distribution. The multi-class problem tasked several
scoring methods with determining a ranked list of features for classification of
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Table 4: Confusion Matrix for Random Forest classification over all classes
Predicted Class

T1 T2 Ta
T1 21 0 2
T2 0 8 0

Original Class

Ta 2 1 24

all three classes, T1 vs. T2 and Ta vs. T1. To evaluate their choices, sev-
eral classifiers were run over these three datasets in a competition of accuracy
and performance. It was determined that the Information Gain (IG) ranking
algorithm classified using Random Forest (RF) yielded the best classification
accuracy across all multi-class cases, as verified with 10-Fold Cross Validation.
The actual classification run over this cross validation was superb, only miscal-
culating four samples from the original sample size of fifty-eight as seen in Table
4. Furthermore, different amounts of features were run from the highest ranked.
We concluded that the three highest ranked features were sufficient and optimal
in all classification cases. Thus, we present the following highest ranking genes
(biomarkers) for each of the three corresponding multi-class cases, evaluated
separately using Information Gain:

Knowing that classification performance was sufficiently high for each multi-
class case, as shown in Table 3, we concur that these biomarkers are unques-
tionably indicative of their respective bladder cancer stages. When looking at
the associated Information Gain scores of these top picks, they are clear stand-
outs from the other samples, the vast majority of which are determined to be
completely useless. These files may be viewed in the source documentation, and
show how the top three features are consistently higher than all others in score.

9 Conclusion
Thanks to the mathematical power and intelligence behind the Scikit-Learn and
Weka tools, the unfavourable bladder cancer dataset has been transformed and
successfully analyzed. Through preprocessing techniques such as resampling,
class separation and feature selection, a naturally overpopulated feature space
containing 58,000 attributes was reduced to a superior representation using only
3. Using the Random Forest classifier, we are able to easily shift perspective on
the data, immediately identifying biomarkers that have the highest correlation
to their cancer stages. It goes without saying that the filtering capabilities of
machine learning can completely unlock otherwise useless data.
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