

HyperTune
Distributed Training and Hyperparameter Optimization for Deep Neural Networks

Joel Rorseth
 David R. Cheriton School of Computer Science

 University of Waterloo
 joel.rorseth@uwaterloo.ca

Petar Basta
 David R. Cheriton School of Computer Science

 University of Waterloo
p3basta@uwaterloo.ca

ABSTRACT
Since their inception, the performance of deep neural networks
has been highly dependent on their hyperparameters, motivating
the employment of hyperparameter optimization tools. As the
complexity and size of datasets and models increase, so too does
the importance of efficiency in these tools. While advances in the
literature have explored multiple dimensions upon which to
distribute deep neural network training, hyperparameter
optimization tools have been slow to adopt this new training
paradigm. The few tools that do support distributed training are
limited to the basic data parallel strategies, however recent
advancements in model parallel, hybrid parallel, and pipeline
parallel strategies have yet to be explored in the context of
hyperparameter optimization. In this project, we implement our
own hyperparameter optimization tool, HyperTune, which
implements distributed deep neural network training using
modular parallelization strategies. In our evaluation, we
implement data parallel, model parallel, and GPipe [3]
parallelization strategies, and examine performance against a
leading data parallel distributed hyperparameter optimization tool.

ACM Reference format:

Joel Rorseth and Petar Basta. 2021. HyperTune: Distributed Training and
Hyperparameter Optimization for Deep Neural Networks.

1 Introduction
In the modern age of deep learning (DL), deep neural networks
(DNNs) have been implemented using a wide variety of
architectures, and have been successfully applied to many real-
world problems. However, while their capabilities have grown
significantly, so too has their size and complexity. Recent DNNs
such as BERT [2] have as many as 340 million parameters, and
even more recently, GPT-3 [1] with 175 billion parameters.
Considered alongside increasingly large datasets, these factors
have significantly increase the demands of DNN training,

requiring more time and memory resources. Recent research has
reflected a renewed focus on the efficiency of DNN training,
seeking to leverage recent hardware and software advancements
such as those from the distributed computing literature. With the
integration of distributed parallel computation, recent work has
improved the efficiency of tractable DNN training, and provided a
solution to train models that simply require more resources than
available [6].

Continuing down the DNN pipeline, the process of
hyperparameter optimization (HPO) is also directly affected by
increasing DNN model size and complexity. Since any given HPO
algorithm must repeatedly train DNNs with various
hyperparameter configurations, the runtime of HPO scales
proportionally with that of DNN training. Recent HPO tools have
successfully integrated advancements proposed in the distributed
DNN training literature, however recent improvements such as
those within the scope of hybrid parallelism have not yet been
explored. Moreover, recent work in applying parallel computation
to HPO has often focused on the parallelization of DNN training
jobs, referred to as trials. The intersection of these two
dimensions for parallelization has remained relatively unexplored,
with only a few works such as RubberBand [7] and Katib [10]. To
formulate our problem in clear terms, we aim to implement and
compare several recent parallel DNN training strategies within a
distributed parallel HPO tool. To establish a fair comparison, we
implement our own distributed parallel HPO tool which
modularizes the DNN training strategy, providing an interface to
support several different parallelization strategies for training
DNNs.

To motivate this problem, we need only extrapolate upon the
clear trend that DNNs are growing both in size and complexity,
and realize that HPO tools will exhibit the same demands.
Therefore, the continuous integration of new advances in
distributed DNN training is equally crucial for HPO. These
advancements benefit HPO in the same way as DNN training, by
improving efficiency, better utilizing distributed hardware,
reducing memory footprint, and reducing runtime. The problem is
particularly interesting in the context of HPO, as the two possible
dimensions of distributed parallelization greatly increases the
search space for potential hardware allocations. It is surprising
that current tools do not explore this search space, and instead
settle on basic data parallel DNN training. Finding optimal ways
to partition this search space certainly makes this problem
challenging, though this is beyond the scope of our work. Instead,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).

we focus on the challenges introduced by the modularization of
DNN training parallelism strategies, which is significant when
combining with trial-level HPO parallelism. More importantly,
the problem is particularly challenging from an implementation
standpoint, as DNN training and HPO tools must be created and
integrated from the ground up.

In this paper, we present our own simple distributed HPO tool
HyperTune, which supports the integration of several recent
parallel DNN training strategies within the distributed parallel
execution trials. More specifically, HyperTune is a Python HPO
tool that enables PyTorch DNN training with minimal training
code modification, which allows the user to choose between data
parallelism (DP), model parallelism (MP), GPipe (a recent
pipeline parallel approach), and no parallelism. In summary, we
make the following contributions:

• We develop a distributed HPO tool, HyperTune, with
modular support for distributed DNN training

• We implement MP, DP, and GPipe distributed DNN
training strategies for HyperTune, and provide interfaces
to extend training for other potential strategies

• We compare the runtime and memory consumption of
MP, DP, and GPipe, by running HPO on ImageNet and
MNIST training tasks, with ResNet and AlexNet DNN
models

• We compare the runtime and memory consumption for
various configurations of HyperTune against Ray Tune
[5] (with support for Horovod [9]), a leading full-
distributed HPO tool

2 Background and Related Work
In this section, we review pertinent background information
covering important concepts and terminology from distributed
computing, HPO, and parallel DNN training. In addition, we
discuss related works from these areas, along with any noteworthy
limitations.

2.1 Hyperparameter Optimization
Since the performance of a typical neural network is heavily
influenced by its hyperparameters (such as its learning rate or
batch size), it is beneficial to test many hyperparameter
combinations in order to find the best one for the problem at hand.
The power set consisting of all possible hyperparameter
combinations (or more formally, hyperparameter configurations)
is referred to as the hyperparameter space. Several algorithms
exist to traverse the hyperparameter space, such as grid search or
random search, and employ various heuristics to navigate the
space in different ways.

Grid search performs an exhaustive search of the
hyperparameter space, evaluating every possible hyperparameter
configuration. When the hyperparameter space is too large to
explore in practice, these algorithms may prune the search space
dynamically. For example, random search will evaluate arbitrary
subsets of the hyperparameter space, instead of evaluating all
configurations exhaustively.

Each hyperparameter configuration will be used to train a
model for a short period of time, and then the winner will be
trained for the full duration and used as the final model. This
process is called hyperparameter optimization (HPO). Similarly,
the training (evaluation) of a DNN for a given hyperparameter
configuration is referred to as a trial. In the context of a
distributed hardware environment, HPO can elect to execute all
trials on a single machine, or distribute them across machines and
devices (GPUs or CPUs).

2.1.1 HPO Tools
Originally, popular HPO tools executed trials synchronously on a
single machine. While vertically scaling the host machine could
enable inter-machine trial parallelism, horizontal scaling is
certainly more promising due to the immense size of many DNN
models and datasets. Furthermore, each trial is independent of
each other, and need only be coordinated by a central controller.
Several recent HPO tools have added support for distributed
parallel trial execution, with a small subset of these providing
support for parallel DNN training.

Perhaps the most popular open-source tool for distributed
HPO, Ray Tune builds upon the popular distributed computing
framework Ray to enable trial-level parallelization across multiple
machines. Tune supports many popular ML frameworks such as
PyTorch, Keras, and TensorFlow, and allows users to choose from
the latest HPO algorithms. Tune offers an API for direct
integration with the popular distributed DNN training framework
Horovod, which enables the integration of its parallel DNN
training capabilities.

As a similar alternative for cloud deployments, RubberBand
also provides fully distributed HPO at the trial and training level.
RubberBand has not been open-sourced, therefore it lacks many
of the features and optimizations that have been contributed to
Tune. RubberBand’s main contribution is its focus on minimizing
cost in a cloud environment through dynamic resource allocation,
being able to achieve a cost-reduction of up to 2x compared to
static allocation methods.

2.2 Trial Parallelization
Ray Tune enables easy parallelization across trials, but has no
functionality to parallelize within trials without the integration of
Horovod. RubberBand is able to parallelize within trials as well,
but is only able to use data parallelism (discussed below). Within
the context of training a trial on a single machine, there exists
many different approaches. The simplest method is to not
implement any sort of parallelization within a given trial, but this
has shown to perform rather poorly against advanced
parallelization techniques.

2.2.1 Data Parallelism (DP). Data Parallelism is the most
well-known of these techniques and involves replicating the entire
DNN model to multiple GPUs. Each GPU trains its copy of the
model with only a subset of the data that it is assigned, and
periodically communicates with the other GPUs to synchronize
model weights. Many implementations of DP exist, but we will
use the popular Horovod tool as a baseline in our evaluation.

Horovod is a distributed machine learning training tool
released by Uber and has support for PyTorch, Keras,
TensorFlow, and Apache MXNet. The goal of Horovod is to
create a framework which can easily modify a single-GPU
training script and leverage a few optimizations on top of DP to
train across multiple GPUs in parallel.

2.2.2 Model Parallelism (MP). Model parallelism is
essentially the opposite of DP; each GPU gets its own copy of the
training data, but only receives a subset of the model. Model
Parallelism was initially brought to life for use with models that
are too large to fit entirely into memory, in which case the model
could be partitioned across several GPUs. By splitting models up,
MP strategies have been able to increase the total size of models
as well as their number of parameters. This has shown to lower
the memory requirements necessary to train neural networks, as
well as increase prediction accuracy, but unfortunately the
effectiveness of this technique relies heavily on the partitioning of
the model.

2.2.3 Hybrid Parallelism (HP). Hybrid parallelism involves a
combination of both data & model parallel. Compared to
traditional data parallelism, HP has been shown to decrease
runtime as well as memory usage. Another big accomplishment of
HP is its ability to decrease the amount of inter-process
communication, and in some cases decrease the amount of data
I/O.
2.2.4 Pipeline Parallelism (PP). Pipeline parallelism is a method
which combines model parallelism with data pipelining to address
the issue of GPU underutilization. By pipelining different
subsequences of layers onto separate GPUs, PP is able to provide
a great alternative to vanilla MP or DP. This method was first
introduced in 2018 by GPipe and PipeDream [8], and further
developed into a PyTorch library called torchgpipe [4].

GPipe allows for any network that can be expressed as a
sequential model to be scaled up using pipeline parallelism.
Thanks to its state-of-the-art batch-splitting pipelining algorithm,
it can achieve near-linear decrease in runtime. GPipe handles all
of this in a synchronous fashion.

PipeDream works on a similar concept, also avoiding the
typical downfalls of DP methods when training large models.
Through careful partitioning of DNN layers amongst GPUs, as
well as a few other techniques, PipeDream achieves up to 5x
faster time-to-accuracy results than typical DP training. It has also
shown that in some cases, it is able to reduce communication
overhead by almost 95%. The main difference between
PipeDream and GPipe is that PipeDream performs its pipelining
in an asynchronous manner.

These papers have made a massive impact on the distributed
computing community but are difficult to reproduce and use in
real-world scenarios. To solve this problem, torchgpipe
implements GPipe’s micro-batch pipeline parallelism technique in
the form of a Python library, enabling PyTorch DNN training with
GPipe. This is a big step forward as it allows practical integration
of pipeline parallelism into real-world DNN training.

Some tools exist which can parallelize across trials, and some
tools exist which can parallelize within trials, but there has yet to
be an open-source project which both while allowing for multiple

parallelization strategies to be utilized. Using a combination of
Horovod with Ray Tune, it is possible to perform data parallel
distributed hyperparameter optimization, but it is not easy to plug
in MP, HP, or PP techniques. This is where the motivation for
HyperTune arises, which is to create an easy-to-use framework
which can parallelize across and within trials, while offering
modular parallelization strategies.

3 HyperTune Architecture
From a high-level architectural view, HyperTune is comprised of
two distinct components, namely the controller and the training
script. The controller is responsible for the HPO-specific aspects
of HyperTune, such as scheduling and executing trials on
specified remote machines. Meanwhile, the training script is
responsible for carrying out a specific DNN training job, and
reporting the necessary metrics upon successful completion. By
providing one of our training implementations to a single
controller instance, HyperTune coordinates the execution of DNN
training across remote machines and continues until determining
the optimal hyperparameter configuration. For convenience and
utility, we provide command line interfaces to both the controller
and training scripts, and a Bash script to launch an entire
HyperTune job.

3.1 Controller
Playing a central role in the HyperTune tool, the controller is a
fully functional yet no-frills HPO tool that is similar to many
popular open source HPO tools. Its design is highly modularized
using abstract classes, providing flexibility to distribute and
schedule trials in many different ways.

As a direct interface to the DNN training scripts, we define a
Trial class to represent each trial. Intuitively, a trial encapsulates
the execution and results of DNN training for a single
hyperparameter configuration. Therefore, the Trial class runs the
training script provided to the controller using specific
hyperparameters, then stores the results in a TrialResult class. For
our experiment, we record the specified HPO criteria value (such
as test accuracy or loss), runtime, and various memory
measurements. To support the distribution of trials across remote
machines, each Trial establishes an SSH connection with an
available machine, triggering the correct training execution and
parsing its output.

The scheduler is responsible for scheduling the execution of
trials, and is implemented as an abstract class. For our
experiments, we implement a parallel round-robin scheduler
subclass, which executes Trials in a parallel round-robin fashion.
At any given time, each machine executes one trial, and draws
another trial from a pool upon completion. Our round-robin
scheduler is essentially a distributed implementation of grid
search, a basic yet popular HPO search algorithm for navigating
hyperparameter spaces. The scheduler abstraction allows for the
implementation of other search algorithms and distribution
strategies, which can be easily substituted in the controller.

Several other classes are defined to comprise the full
controller, which cover tasks such iterating hyperparameter spaces
(imported from a JSON config file) or calculating optimal
hyperparameters across all results.

3.2 Training Scripts
To handle the details of distributed parallel DNN training, we
delegate the entire training process to a training script. These
scripts are triggered by trials in the controller, whose only
expectation is that the training script print its results. In theory,
most PyTorch DNN training scripts can be used directly with a
minimal modification to print the expected results. To support
several different types of distributed training, we add further
configuration to enable DP, MP, and GPipe parallel training. Due
to the inability to reuse training procedures within the base
PyTorch library, we implement separate training scripts for
ImageNet and MNIST tasks respectively. Being nearly identical
in theory, these two scripts are modified identically to enable all
parallel training strategies and compatibility with HyperTune
controller.

Being the simplest of our chosen strategies by nature, DP is
easily enabled using CUDA utilities provided through the
PyTorch library. By wrapping the PyTorch DNN model in a
special DistributedDataParallel class, PyTorch can replicate the
model and therefore distribute training across available GPU
devices. Since other parallelization strategies involve arbitrary
partitioning of the arbitrarily complex DNN models, there is no
such wrapper class for any other than DP. As explained in the
following sections, the developer must manually devise arbitrary
partitionings, or employ a heuristic partitioning search seen in
recent works such as PipeDream. This is likely a primary factor in
why HPO tools have limited themselves to DP, as MP-based
strategies are subject to arbitrary partitionings that must be
specified by the developer. However, libraries can certainly offer
the ability to employ certain well-defined partitioning searches (as
we attempt to demonstrate in this work), and incorporate this into
a similar convenient model wrapper.

To explore the capabilities of a basic MP approach, we
implement our own MP ResNet and AlexNet DNNs using
intuitive (though not necessarily optimal) layer partitionings. As
opposed to DP, the PyTorch DNN must be modified to assign its
layers to GPU devices. However, the training script itself remains
unchanged. To summarize the difference, implementing DP in
PyTorch requires minimal modification of the training procedure
only, but implementing MP requires minimal modification of the
model itself.

By leveraging the torchgpipe library for PyTorch, HyperTune
is able to train DNN models using the recent GPipe parallelization
strategy. This library provides a familiar PyTorch model wrapper
that determines a partitioning automatically, using a heuristic-
based profiler to optimize for either runtime or accuracy. As
discussed in their paper, torchgpipe only supports sequential DNN
models (those that inherit from PyTorch’s Sequential class), due
to the inherent nature of pipeline parallelism (PP). The authors
suggest that any neural network can be represented in sequential

form, although this places the burden of adapting non-sequential
DNN models on the developer. Moreover, the effects of this
adaptation process on accuracy (or other metrics) are not
discussed. For the purposes of this work, we successfully adapt a
sequential ResNet DNN for our experiments, but leave the
adaptation of AlexNet for potential future work. Further, we use
the runtime-optimized heuristic for all evaluations in this paper,
and fix the degree of GPipe partitioning to the value of 8.

4 Evaluation
In this section, we describe and quantify the performance of
HyperTune in terms of runtime and memory usage, especially to
highlight the performance implications of MP, DP, and GPipe
training. Moreover, we compare these results against those of the
popular distributed HPO tool Ray Tune, which supports both
dimensions of parallelism when run using the Horovod tool. As
discussed, AlexNet is not compatible with torchgpipe without
modification, therefore this combination is excluded from the
corresponding experiments.

4.1 Experimental Setup
Machines: For all experiments, we use 3 high-performance
worker machines located on-premise at the University of
Waterloo, with 1 extra machine (the head) to coordinate the
worker machines. All machines have Intel Xeon Silver 4114
processors running at 2.20 GHz, and run Ubuntu 18.04.5. Each
worker machine has 2 Nvidia Tesla P40 GPUs, as well as 192GB
RAM. It is important to note that these are shared machines, so it
is possible the resources were being used by others while our
experiments were being run.

Datasets: The main dataset we used in our experiments is the
dataset for the Large Scale Visual Recognition Challenge
(ILSVRC), better known as the ImageNet dataset. This dataset
contains just under 1.3 million training images, 50,000 validation
images, and 100,000 test images, all containing 3 colour channels.
This dataset was chosen to test the inherent memory efficiency of
MP, as this particularly large dataset would provide a greater
challenge with limited resources. Since the ImageNet dataset took
a long amount of time to train even a single epoch, another dataset
was necessary to be able to traverse a large hyperparameter space.
The Modified National Institute of Standards and Technology
dataset, or MNIST, contains only 60,000 training images, and
10,000 test images, all of which are greyscale (1 channel).

Hyperparameter space: Due to the significant size of the
ImageNet dataset and the proportional effect on training runtime,
we use a small hyperparameter space with six configurations. We
specify two discrete values for learning rate, three discrete values
for batch size, yielding six trials in total.

{
 "lr": [0.1, 0.01],
 "batch-size": [64, 128, 256]

}

For the MNIST task, we specify a larger hyperparameter space to
take advantage of its reduced runtime. Three discrete values are
specified for batch size, learning rate, and gamma
hyperparameters, yielding 27 trials in total.

{
 "batch-size": [64, 128, 256],
 "lr": [0.5, 0.9, 0.99],
 "gamma": [0.5, 0.7, 0.9]

}

Models: The first model used is ResNet-50, a 50 layer DNN

which won 1st place on the ILSVRC 2015 classification task. The
second model used is AlexNet, which placed first on the ILSVRC
2012 classification task. Again, these large models were chosen to
test the claims that model parallelism can achieve memory usage
reductions on large models.

4.2 Trial-Level Runtime
Across many experiments, we compare the runtime of HyperTune
and Ray Tune at the granularity of each trial. In particular, we
consider the runtime across ResNet and AlexNet, on ImageNet
and MNIST, using HyperTune (MP, DP, and GPipe variants) and
Ray Tune. While all ImageNet figures include all six trials,
MNIST figures illustrate only a common subset of nine trials for
brevity and clarity.

Figure 1: Trial-level runtime comparison of HyperTune (with
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod
support) for ResNet on ImageNet.

Considering the ImageNet task first, HyperTune with MP and
GPipe yield trial runtimes approaching 3.5 hours with ResNet.
However, HyperTune with DP shows significant improvement for
ResNet in Figure 1, with an average runtime around 2.5 hours
(almost 40% faster). Ray Tune with Horovod significantly

outperforms all HyperTune variants with an average runtime of
1.7 hours, almost 110% faster than HyperTune with MP or GPipe.

Figure 2: Trial-level runtime comparison of HyperTune (with
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod
support) for AlexNet on ImageNet.

As a testament to the influence of the dataset itself, AlexNet
runtime in Figure 2 exhibits the same performance difference
between DP and MP. For the ImageNet problem, DP is clearly
better suited to handle the extremely large dataset and resulting
model. Furthermore, the DP-based Ray Tune with Horovod has
integrated many significant optimizations over many years of
open-source development, which explains the disparity between
our less-mature HyperTune DP tool.

Figure 3: Trial-level runtime comparison of HyperTune (with
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod
support) for ResNet on MNIST.

Clearly illustrating how neither MP nor DP are ideal for all
problems, we see clear advantages with MP-based DNN training

for the MNIST dataset in Figure 3. Exhibiting low variance across
all nine trials, all methods tested finish with 420-450 seconds with
a ResNet DNN. In this case, HyperTune with GPipe ran the
fastest with an average runtime of 428 second per trial. It ran
1.6% faster than Horovod + Ray Tune (435 seconds/trial), 2.8%
faster than DP (440 seconds/trial), and 4.7% faster than MP (448
seconds/trial).

Figure 4: Trial-level runtime comparison of HyperTune (with
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod
support) for AlexNet on MNIST.

Further illustrating the suitability of MP training for MNIST,
HyperTune MP demonstrates superior runtime for the AlexNet
DNN, with an average runtime around 60 seconds. More
importantly, despite evaluating hyperparameter configurations
that significantly increase DP training runtime, MP training
runtime exhibits almost no variance. As evident in the first three
trials in Figure 4, hyperparameters such as batch size and learning
rate can significantly influence training runtime (and memory
consumption). Due to the efficiency gained by partitioning the
large DNN, MP can maintain typical runtime speeds for this DNN
and dataset. Along with HyperTune with DP, Ray Tune with
Horovod exhibits higher runtimes around 95 seconds for T0
through T2 (batch size 64) and 65 seconds for T3 through T8
(batch size either 128 or 256). In contrast to substantial disparity
in our ImageNet experiments, the performance of HyperTune with
DP is nearly identical to Ray Tune with Horovod. This suggests
that the additional enhancements and capabilities of Ray Tune are
exploited more effectively when applied to larger datasets.

4.2 Trial-Level Peak DNN Memory Usage
Using the same experiment setup, we compare the peak memory
usage of the DNNs trained by HyperTune and Ray Tune at the
same trial-level. Applied to the ImageNet dataset, we see
improvements in memory usage with GPipe that correspond to the
specified degree of parallelization (8, which fixed across all
experiments). In their pipeline parallel approach, this means that 8
micro-batches will be used for partitioning. As such, GPipe peak

memory utilization reflects the expected 8x reduction visible in
our experiments (such as those in Figure 5 and Figure 7). In our
peak DNN memory usage experiments, the reported value reflects
the peak usage per distributed model partition within the
respective parallelization strategy.

Figure 5: Trial-level peak memory usage comparison of
HyperTune (with MP, DP, and GPipe parallelism) and Ray
Tune (with Horovod support) for ResNet on ImageNet.

Although Ray Tune with Horovod often outperforms
HyperTune in runtime, it uses significantly more memory in doing
so, exceeding 20 gigabytes at peak in some trials. Significantly
improving upon all other models, HyperTune with GPipe
maintains near-constant peak memory utilization of 2.5 gigabytes
across all trials, as shown in Figure 5. To rationalize the variance
between trials, we note that trials T5 / T2 use batch size 256, T4 /
T2 use batch size 128, and trials T3 / T1 use batch size 64.

Figure 6: Trial-level peak memory usage comparison of
HyperTune (with MP, DP, and GPipe parallelism) and Ray
Tune (with Horovod support) for AlexNet on ImageNet.

Considering the obvious effect of batch size on memory usage, it
is not surprising that T5 / T2 have the largest memory usage,
followed by T4 / T2, and then T3 / T0. Independent of the
influence of such hyperparameters, which are proportionally
reflected by all tested models, HyperTune with MP and DP
consistently utilize far less memory than Ray Tune with Horovod.
Despite the omission of a GPipe HyperTune implementation, the
AlexNet evaluation in Figure 6 largely reiterates this relative
ranking, albeit in slightly smaller proportions.

The near-zero variance (in peak memory usage) provided by
GPipe promises true horizontal scalability for a future likely
subject to increasingly massive datasets and DNN models. Further
exemplified in our MNIST experiments (Figure 7), GPipe appears
to maintain extremely low peak-memory usage across many
datasets. These results indicate that GPipe-based HPO can
efficiently leverage much larger distributed environments with
fewer resources, such as large clusters with lower-quality
commodity hardware, which is a significant improvement to the
state of the art.

Figure 7: Trial-level peak memory usage comparison of
HyperTune (with MP, DP, and GPipe parallelism) and Ray
Tune (with Horovod support) for ResNet on MNIST.

GPipe aside, our MNIST evaluations of HyperTune and Ray
Tune with both DNN models suggest that MP-based partitioning
is much more optimal in terms of peak memory usage. Ray Tune
with Horovod used ~4.7% more memory than MP for trials T0
through T5, which correspond to batch sizes of 64 and 128. For
T6 through T8, which has batch sizes of 256, Horovod + Ray
Tune used 30% more memory than MP. As established in the
literature, MP is difficult to judge directly, since its effectiveness
is heavily reliant on the optimality of the chosen DNN
partitioning.

While both HyperTune DP and Ray Tune with Horovod (DP)
share very similar performance for MNIST, HyperTune with DP
consistently requires less memory (and with less variance) for the
larger ImageNet dataset. This indicates that the combined
overheads of Ray and Horovod may be unnecessary and counter-

intuitive for certain hyperparameters and datasets, since
HyperTune’s basic DP implementation was much more efficient
on ImageNet (Figure 5). Considering Ray Tune’s runtime speedup
in the corresponding test (Figure 1), HyperTune with DP seems to
offer a solution which better prioritizes memory efficiency in the
apparent runtime vs. memory tradeoff.

Figure 8: Trial-level peak memory usage comparison of
HyperTune (with MP, DP, and GPipe parallelism) and Ray
Tune (with Horovod support) for AlexNet on MNIST.

For AlexNet trained with MNIST data, all three HyperTune
parallelization strategies resulted in near-constant peak memory
usage, but MP maintained a low 2 gigabytes peak memory aross
all trials.

4.3 Experiment Performance Metrics

Dataset Model Parallel
Training
Strategy

Parameter
Memory
(GB)

Buffer
Memory
(GB)

Overall
Runtime
(s)

ImageNet AlexNet DP 0.227618 0 22,740
MP 0.227618 0 24,600
GPipe N/A N/A N/A
Ray Tune 0.227618 0 12,240

ResNet DP 0.095207 0.000198
28

18,120

MP 0.095207 0.000198
28

21,720

GPipe 0.095207 0.000198
28

25,020

Ray Tune 0.095207 0.000198
28

12,840

MNIST AlexNet DP 0.227561 0 712
MP 0.227561 0 563
GPipe N/A N/A N/A
Ray Tune 0.227561 0 937

ResNet DP 0.095207 0.000198
28

3,960

MP 0.095207 0.000198
28

4,080

GPipe 0.095184 0.000198
28

3,900

Ray Tune 0.095207 0.000198
28

4,140

Table 1: Experiment-level memory usage and runtime
comparison of HyperTune (with MP, DP, and GPipe
parallelism) and Ray Tune (with Horovod support) for ResNet
and AlexNet on ImageNet and MNIST.

At the experiment-level, we observe mixed results for overall
runtime that echo the mixed results of the constituent trials.
Specifically, Ray Tune with Horovod executes all ImageNet HPO
experiments nearly 100% faster than the next best HyperTune
variant. However for AlexNet on MNIST, HyperTune with MP
executes 66% faster than Tune, with improved runtime for other
variants as well. ResNet on MNIST executes fastest using
HyperTune with GPipe, although marginally. We reiterate the fact
that certain datasets and models may be better suited for DP or
MP, which has been apparent across our tests. These statistics
validate our original motivation to create a modular HPO tool, one
which allows different training strategies to be substituted in
different situations. Future work should explore the use of
profiling runs and other heuristics to dynamically determine these
partitionings (or partitioning strategies), as has been explored in
recent distributed DNN training research.

5 Conclusion
In this work, we presented our fully distributed HPO tool
HyperTune, the first (to the best of our knowledge) to modularize
its parallel DNN training strategy to support recent MP and PP
approaches. We show that for some datasets and models, our DP-
based HyperTune variant utilizes less memory than the popular
DP-based Ray Tune with Horovod. Moreover, we demonstrate the
utility of the GPipe parallel DNN training strategy for HPO,
proving that it efficiently partitions training across more devices
while maintaining or reducing runtime. In summary, our work
justifies the integration of recent hybrid parallel DNN training
strategies into future HPO tools and gives rise to new directions of
future research in this field. In future work, our tool could be
improved to support more advances in parallel DNN training,
such as the promising PipeDream approach. Further testing using
models and datasets from different domains would identify more
strengths and weaknesses. Additionally, partitioning exploration
algorithms could be incorporated to explore the large search space
formed by trial-level and training-level partitionings.

ACKNOWLEDGMENTS
We would like to thank Lori Paniak from the University of
Waterloo IT department, for his help in configuring the hardware
for our evaluation. We also extend our gratitude to Dr. Khuzaima
Daudjee at the University of Waterloo for his guidance during the
completion of this project.

REFERENCES
[1] Tom B. Brown, et al. 2020. Language models are few-shot learners.

arXiv:2005.14165

[2] Jacob Devlin et al. 2018. Bert: Pre-training of deep bidirectional transformers

for language understanding. axXiv: 1810.04805

[3] Yanping Huang et al. 2019. GPipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing systems
32, 103-112.

[4] Chiheon Kim et al. 2020. torchgpipe: On-the-fly pipeline parallelism for

training giant models. arXiv:2004.09910

[5] Richard Liaw et al. 2018. Tune: A research platform for distributed model

selection and training. arXiv:1807.05118

[6] Ruben Mayer and Hans-Arno Jacobsen. 2020. Scalable Deep Learning on

Distributed Infrastructures. ACM Computing Surveys 53, 1 (2020), 1–37.
DOI:https://doi.org/10.1145/3363554

[7] Ujval Misra et al. 2021. RubberBand: Cloud-based Hyperparameter Tuning.

Sixteenth European Conference on Computer Systems (EuroSys ’21), April 26–
28, 2021, Online, United Kingdom. ACM, New York, NY, USA, 16 pages.
DOI:https://doi.org/10.1145/3447786.3456245

[8] Deepak Narayanan et al. 2019. PipeDream: generalized pipeline parallelism for

DNN training. Proceedings of the 27th ACM Symposium on Operating System
Principles. arXiv:1806.03377

[9] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy

distributed deep learning in TensorFlow. arXiv:1802.05799

[10] Jinan Zhou et al. 2019. Katib: A distributed general automl platform on

Kubernetes. Conference on Operation Machine Learning (OpML 19)

