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ABSTRACT 
Since their inception, the performance of deep neural networks 
has been highly dependent on their hyperparameters, motivating 
the employment of hyperparameter optimization tools. As the 
complexity and size of datasets and models increase, so too does 
the importance of efficiency in these tools. While advances in the 
literature have explored multiple dimensions upon which to 
distribute deep neural network training, hyperparameter 
optimization tools have been slow to adopt this new training 
paradigm. The few tools that do support distributed training are 
limited to the basic data parallel strategies, however recent 
advancements in model parallel, hybrid parallel, and pipeline 
parallel strategies have yet to be explored in the context of 
hyperparameter optimization. In this project, we implement our 
own hyperparameter optimization tool, HyperTune, which 
implements distributed deep neural network training using 
modular parallelization strategies. In our evaluation, we 
implement data parallel, model parallel, and GPipe [3] 
parallelization strategies, and examine performance against a 
leading data parallel distributed hyperparameter optimization tool. 
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1 Introduction 
In the modern age of deep learning (DL), deep neural networks 
(DNNs) have been implemented using a wide variety of 
architectures, and have been successfully applied to many real-
world problems. However, while their capabilities have grown 
significantly, so too has their size and complexity. Recent DNNs 
such as BERT [2] have as many as 340 million parameters, and 
even more recently, GPT-3 [1] with 175 billion parameters. 
Considered alongside increasingly large datasets, these factors 
have significantly increase the demands of DNN training, 

requiring more time and memory resources. Recent research has 
reflected a renewed focus on the efficiency of DNN training, 
seeking to leverage recent hardware and software advancements 
such as those from the distributed computing literature. With the 
integration of distributed parallel computation, recent work has 
improved the efficiency of tractable DNN training, and provided a 
solution to train models that simply require more resources than 
available [6]. 

Continuing down the DNN pipeline, the process of 
hyperparameter optimization (HPO) is also directly affected by 
increasing DNN model size and complexity. Since any given HPO 
algorithm must repeatedly train DNNs with various 
hyperparameter configurations, the runtime of HPO scales 
proportionally with that of DNN training. Recent HPO tools have 
successfully integrated advancements proposed in the distributed 
DNN training literature, however recent improvements such as 
those within the scope of hybrid parallelism have not yet been 
explored. Moreover, recent work in applying parallel computation 
to HPO has often focused on the parallelization of DNN training 
jobs, referred to as trials. The intersection of these two 
dimensions for parallelization has remained relatively unexplored, 
with only a few works such as RubberBand [7] and Katib [10]. To 
formulate our problem in clear terms, we aim to implement and 
compare several recent parallel DNN training strategies within a 
distributed parallel HPO tool. To establish a fair comparison, we 
implement our own distributed parallel HPO tool which 
modularizes the DNN training strategy, providing an interface to 
support several different parallelization strategies for training 
DNNs. 

To motivate this problem, we need only extrapolate upon the 
clear trend that DNNs are growing both in size and complexity, 
and realize that HPO tools will exhibit the same demands. 
Therefore, the continuous integration of new advances in 
distributed DNN training is equally crucial for HPO. These 
advancements benefit HPO in the same way as DNN training, by 
improving efficiency, better utilizing distributed hardware, 
reducing memory footprint, and reducing runtime. The problem is 
particularly interesting in the context of HPO, as the two possible 
dimensions of distributed parallelization greatly increases the 
search space for potential hardware allocations. It is surprising 
that current tools do not explore this search space, and instead 
settle on basic data parallel DNN training. Finding optimal ways 
to partition this search space certainly makes this problem 
challenging, though this is beyond the scope of our work. Instead, 
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we focus on the challenges introduced by the modularization of 
DNN training parallelism strategies, which is significant when 
combining with trial-level HPO parallelism. More importantly, 
the problem is particularly challenging from an implementation 
standpoint, as DNN training and HPO tools must be created and 
integrated from the ground up. 

In this paper, we present our own simple distributed HPO tool 
HyperTune, which supports the integration of several recent 
parallel DNN training strategies within the distributed parallel 
execution trials. More specifically, HyperTune is a Python HPO 
tool that enables PyTorch DNN training with minimal training 
code modification, which allows the user to choose between data 
parallelism (DP), model parallelism (MP), GPipe (a recent 
pipeline parallel approach), and no parallelism. In summary, we 
make the following contributions: 

• We develop a distributed HPO tool, HyperTune, with 
modular support for distributed DNN training 

• We implement MP, DP, and GPipe distributed DNN 
training strategies for HyperTune, and provide interfaces 
to extend training for other potential strategies 

• We compare the runtime and memory consumption of 
MP, DP, and GPipe, by running HPO on ImageNet and 
MNIST training tasks, with ResNet and AlexNet DNN 
models 

• We compare the runtime and memory consumption for 
various configurations of HyperTune against Ray Tune 
[5] (with support for Horovod [9]), a leading full-
distributed HPO tool 

2 Background and Related Work 
In this section, we review pertinent background information 
covering important concepts and terminology from distributed 
computing, HPO, and parallel DNN training. In addition, we 
discuss related works from these areas, along with any noteworthy 
limitations. 

 
2.1 Hyperparameter Optimization 
Since the performance of a typical neural network is heavily 
influenced by its hyperparameters (such as its learning rate or 
batch size), it is beneficial to test many hyperparameter 
combinations in order to find the best one for the problem at hand. 
The power set consisting of all possible hyperparameter 
combinations (or more formally, hyperparameter configurations) 
is referred to as the hyperparameter space. Several algorithms 
exist to traverse the hyperparameter space, such as grid search or 
random search, and employ various heuristics to navigate the 
space in different ways. 

Grid search performs an exhaustive search of the 
hyperparameter space, evaluating every possible hyperparameter 
configuration. When the hyperparameter space is too large to 
explore in practice, these algorithms may prune the search space 
dynamically. For example, random search will evaluate arbitrary 
subsets of the hyperparameter space, instead of evaluating all 
configurations exhaustively. 

Each hyperparameter configuration will be used to train a 
model for a short period of time, and then the winner will be 
trained for the full duration and used as the final model. This 
process is called hyperparameter optimization (HPO). Similarly, 
the training (evaluation) of a DNN for a given hyperparameter 
configuration is referred to as a trial. In the context of a 
distributed hardware environment, HPO can elect to execute all 
trials on a single machine, or distribute them across machines and 
devices (GPUs or CPUs). 
 
2.1.1 HPO Tools 
Originally, popular HPO tools executed trials synchronously on a 
single machine. While vertically scaling the host machine could 
enable inter-machine trial parallelism, horizontal scaling is 
certainly more promising due to the immense size of many DNN 
models and datasets. Furthermore, each trial is independent of 
each other, and need only be coordinated by a central controller. 
Several recent HPO tools have added support for distributed 
parallel trial execution, with a small subset of these providing 
support for parallel DNN training. 

Perhaps the most popular open-source tool for distributed 
HPO, Ray Tune builds upon the popular distributed computing 
framework Ray to enable trial-level parallelization across multiple 
machines. Tune supports many popular ML frameworks such as 
PyTorch, Keras, and TensorFlow, and allows users to choose from 
the latest HPO algorithms. Tune offers an API for direct 
integration with the popular distributed DNN training framework 
Horovod, which enables the integration of its parallel DNN 
training capabilities. 

As a similar alternative for cloud deployments, RubberBand 
also provides fully distributed HPO at the trial and training level. 
RubberBand has not been open-sourced, therefore it lacks many 
of the features and optimizations that have been contributed to 
Tune. RubberBand’s main contribution is its focus on minimizing 
cost in a cloud environment through dynamic resource allocation, 
being able to achieve a cost-reduction of up to 2x compared to 
static allocation methods. 
 
2.2 Trial Parallelization 
Ray Tune enables easy parallelization across trials, but has no 
functionality to parallelize within trials without the integration of 
Horovod. RubberBand is able to parallelize within trials as well, 
but is only able to use data parallelism (discussed below). Within 
the context of training a trial on a single machine, there exists 
many different approaches. The simplest method is to not 
implement any sort of parallelization within a given trial, but this 
has shown to perform rather poorly against advanced 
parallelization techniques. 

2.2.1 Data Parallelism (DP). Data Parallelism is the most 
well-known of these techniques and involves replicating the entire 
DNN model to multiple GPUs. Each GPU trains its copy of the 
model with only a subset of the data that it is assigned, and 
periodically communicates with the other GPUs to synchronize 
model weights. Many implementations of DP exist, but we will 
use the popular Horovod tool as a baseline in our evaluation. 



 

 

Horovod is a distributed machine learning training tool 
released by Uber and has support for PyTorch, Keras, 
TensorFlow, and Apache MXNet. The goal of Horovod is to 
create a framework which can easily modify a single-GPU 
training script and leverage a few optimizations on top of DP to 
train across multiple GPUs in parallel.  

2.2.2 Model Parallelism (MP). Model parallelism is 
essentially the opposite of DP; each GPU gets its own copy of the 
training data, but only receives a subset of the model. Model 
Parallelism was initially brought to life for use with models that 
are too large to fit entirely into memory, in which case the model 
could be partitioned across several GPUs. By splitting models up, 
MP strategies have been able to increase the total size of models 
as well as their number of parameters. This has shown to lower 
the memory requirements necessary to train neural networks, as 
well as increase prediction accuracy, but unfortunately the 
effectiveness of this technique relies heavily on the partitioning of 
the model.  

2.2.3 Hybrid Parallelism (HP). Hybrid parallelism involves a 
combination of both data & model parallel. Compared to 
traditional data parallelism, HP has been shown to decrease 
runtime as well as memory usage. Another big accomplishment of 
HP is its ability to decrease the amount of inter-process 
communication, and in some cases decrease the amount of data 
I/O.  
2.2.4 Pipeline Parallelism (PP). Pipeline parallelism is a method 
which combines model parallelism with data pipelining to address 
the issue of GPU underutilization. By pipelining different 
subsequences of layers onto separate GPUs, PP is able to provide 
a great alternative to vanilla MP or DP. This method was first 
introduced in 2018 by GPipe and PipeDream [8], and further 
developed into a PyTorch library called torchgpipe [4]. 

GPipe allows for any network that can be expressed as a 
sequential model to be scaled up using pipeline parallelism. 
Thanks to its state-of-the-art batch-splitting pipelining algorithm, 
it can achieve near-linear decrease in runtime. GPipe handles all 
of this in a synchronous fashion. 

PipeDream works on a similar concept, also avoiding the 
typical downfalls of DP methods when training large models. 
Through careful partitioning of DNN layers amongst GPUs, as 
well as a few other techniques, PipeDream achieves up to 5x 
faster time-to-accuracy results than typical DP training. It has also 
shown that in some cases, it is able to reduce communication 
overhead by almost 95%. The main difference between 
PipeDream and GPipe is that PipeDream performs its pipelining 
in an asynchronous manner. 

These papers have made a massive impact on the distributed 
computing community but are difficult to reproduce and use in 
real-world scenarios. To solve this problem, torchgpipe 
implements GPipe’s micro-batch pipeline parallelism technique in 
the form of a Python library, enabling PyTorch DNN training with 
GPipe. This is a big step forward as it allows practical integration 
of pipeline parallelism into real-world DNN training. 

Some tools exist which can parallelize across trials, and some 
tools exist which can parallelize within trials, but there has yet to 
be an open-source project which both while allowing for multiple 

parallelization strategies to be utilized. Using a combination of 
Horovod with Ray Tune, it is possible to perform data parallel 
distributed hyperparameter optimization, but it is not easy to plug 
in MP, HP, or PP techniques. This is where the motivation for 
HyperTune arises, which is to create an easy-to-use framework 
which can parallelize across and within trials, while offering 
modular parallelization strategies.  

3 HyperTune Architecture 
From a high-level architectural view, HyperTune is comprised of 
two distinct components, namely the controller and the training 
script. The controller is responsible for the HPO-specific aspects 
of HyperTune, such as scheduling and executing trials on 
specified remote machines. Meanwhile, the training script is 
responsible for carrying out a specific DNN training job, and 
reporting the necessary metrics upon successful completion. By 
providing one of our training implementations to a single 
controller instance, HyperTune coordinates the execution of DNN 
training across remote machines and continues until determining 
the optimal hyperparameter configuration. For convenience and 
utility, we provide command line interfaces to both the controller 
and training scripts, and a Bash script to launch an entire 
HyperTune job. 

3.1 Controller 
Playing a central role in the HyperTune tool, the controller is a 
fully functional yet no-frills HPO tool that is similar to many 
popular open source HPO tools. Its design is highly modularized 
using abstract classes, providing flexibility to distribute and 
schedule trials in many different ways. 

As a direct interface to the DNN training scripts, we define a 
Trial class to represent each trial. Intuitively, a trial encapsulates 
the execution and results of DNN training for a single 
hyperparameter configuration. Therefore, the Trial class runs the 
training script provided to the controller using specific 
hyperparameters, then stores the results in a TrialResult class. For 
our experiment, we record the specified HPO criteria value (such 
as test accuracy or loss), runtime, and various memory 
measurements. To support the distribution of trials across remote 
machines, each Trial establishes an SSH connection with an 
available machine, triggering the correct training execution and 
parsing its output. 

The scheduler is responsible for scheduling the execution of 
trials, and is implemented as an abstract class. For our 
experiments, we implement a parallel round-robin scheduler 
subclass, which executes Trials in a parallel round-robin fashion. 
At any given time, each machine executes one trial, and draws 
another trial from a pool upon completion. Our round-robin 
scheduler is essentially a distributed implementation of grid 
search, a basic yet popular HPO search algorithm for navigating 
hyperparameter spaces. The scheduler abstraction allows for the 
implementation of other search algorithms and distribution 
strategies, which can be easily substituted in the controller. 



 
 

Several other classes are defined to comprise the full 
controller, which cover tasks such iterating hyperparameter spaces 
(imported from a JSON config file) or calculating optimal 
hyperparameters across all results. 

3.2 Training Scripts 
To handle the details of distributed parallel DNN training, we 
delegate the entire training process to a training script. These 
scripts are triggered by trials in the controller, whose only 
expectation is that the training script print its results. In theory, 
most PyTorch DNN training scripts can be used directly with a 
minimal modification to print the expected results. To support 
several different types of distributed training, we add further 
configuration to enable DP, MP, and GPipe parallel training. Due 
to the inability to reuse training procedures within the base 
PyTorch library, we implement separate training scripts for 
ImageNet and MNIST tasks respectively. Being nearly identical 
in theory, these two scripts are modified identically to enable all 
parallel training strategies and compatibility with HyperTune 
controller. 

Being the simplest of our chosen strategies by nature, DP is 
easily enabled using CUDA utilities provided through the 
PyTorch library. By wrapping the PyTorch DNN model in a 
special DistributedDataParallel class, PyTorch can replicate the 
model and therefore distribute training across available GPU 
devices. Since other parallelization strategies involve arbitrary 
partitioning of the arbitrarily complex DNN models, there is no 
such wrapper class for any other than DP. As explained in the 
following sections, the developer must manually devise arbitrary 
partitionings, or employ a heuristic partitioning search seen in 
recent works such as PipeDream. This is likely a primary factor in 
why HPO tools have limited themselves to DP, as MP-based 
strategies are subject to arbitrary partitionings that must be 
specified by the developer. However, libraries can certainly offer 
the ability to employ certain well-defined partitioning searches (as 
we attempt to demonstrate in this work), and incorporate this into 
a similar convenient model wrapper. 

To explore the capabilities of a basic MP approach, we 
implement our own MP ResNet and AlexNet DNNs using 
intuitive (though not necessarily optimal) layer partitionings. As 
opposed to DP, the PyTorch DNN must be modified to assign its 
layers to GPU devices. However, the training script itself remains 
unchanged. To summarize the difference, implementing DP in 
PyTorch requires minimal modification of the training procedure 
only, but implementing MP requires minimal modification of the 
model itself. 

By leveraging the torchgpipe library for PyTorch, HyperTune 
is able to train DNN models using the recent GPipe parallelization 
strategy. This library provides a familiar PyTorch model wrapper 
that determines a partitioning automatically, using a heuristic-
based profiler to optimize for either runtime or accuracy. As 
discussed in their paper, torchgpipe only supports sequential DNN 
models (those that inherit from PyTorch’s Sequential class), due 
to the inherent nature of pipeline parallelism (PP). The authors 
suggest that any neural network can be represented in sequential 

form, although this places the burden of adapting non-sequential 
DNN models on the developer. Moreover, the effects of this 
adaptation process on accuracy (or other metrics) are not 
discussed. For the purposes of this work, we successfully adapt a 
sequential ResNet DNN for our experiments, but leave the 
adaptation of AlexNet for potential future work. Further, we use 
the runtime-optimized heuristic for all evaluations in this paper, 
and fix the degree of GPipe partitioning to the value of 8. 

4 Evaluation 
In this section, we describe and quantify the performance of 
HyperTune in terms of runtime and memory usage, especially to 
highlight the performance implications of MP, DP, and GPipe 
training. Moreover, we compare these results against those of the 
popular distributed HPO tool Ray Tune, which supports both 
dimensions of parallelism when run using the Horovod tool. As 
discussed, AlexNet is not compatible with torchgpipe without 
modification, therefore this combination is excluded from the 
corresponding experiments.  
 
4.1 Experimental Setup 
Machines: For all experiments, we use 3 high-performance 
worker machines located on-premise at the University of 
Waterloo, with 1 extra machine (the head) to coordinate the 
worker machines. All machines have Intel Xeon Silver 4114 
processors running at 2.20 GHz, and run Ubuntu 18.04.5. Each 
worker machine has 2 Nvidia Tesla P40 GPUs, as well as 192GB 
RAM. It is important to note that these are shared machines, so it 
is possible the resources were being used by others while our 
experiments were being run. 

Datasets: The main dataset we used in our experiments is the 
dataset for the Large Scale Visual Recognition Challenge 
(ILSVRC), better known as the ImageNet dataset. This dataset 
contains just under 1.3 million training images, 50,000 validation 
images, and 100,000 test images, all containing 3 colour channels. 
This dataset was chosen to test the inherent memory efficiency of 
MP, as this particularly large dataset would provide a greater 
challenge with limited resources. Since the ImageNet dataset took 
a long amount of time to train even a single epoch, another dataset 
was necessary to be able to traverse a large hyperparameter space. 
The Modified National Institute of Standards and Technology 
dataset, or MNIST, contains only 60,000 training images, and 
10,000 test images, all of which are greyscale (1 channel). 

Hyperparameter space: Due to the significant size of the 
ImageNet dataset and the proportional effect on training runtime, 
we use a small hyperparameter space with six configurations. We 
specify two discrete values for learning rate, three discrete values 
for batch size, yielding six trials in total. 
 

{ 
    "lr": [0.1, 0.01], 
    "batch-size": [64, 128, 256] 

} 



 

 

 
For the MNIST task, we specify a larger hyperparameter space to 
take advantage of its reduced runtime. Three discrete values are 
specified for batch size, learning rate, and gamma 
hyperparameters, yielding 27 trials in total. 
 

{ 
    "batch-size": [64, 128, 256], 
    "lr": [0.5, 0.9, 0.99], 
    "gamma": [0.5, 0.7, 0.9] 

} 
 
Models: The first model used is ResNet-50, a 50 layer DNN 

which won 1st place on the ILSVRC 2015 classification task. The 
second model used is AlexNet, which placed first on the ILSVRC 
2012 classification task. Again, these large models were chosen to 
test the claims that model parallelism can achieve memory usage 
reductions on large models.  
 
4.2 Trial-Level Runtime 
Across many experiments, we compare the runtime of HyperTune 
and Ray Tune at the granularity of each trial. In particular, we 
consider the runtime across ResNet and AlexNet, on ImageNet 
and MNIST, using HyperTune (MP, DP, and GPipe variants) and 
Ray Tune. While all ImageNet figures include all six trials, 
MNIST figures illustrate only a common subset of nine trials for 
brevity and clarity. 
 

 

Figure 1: Trial-level runtime comparison of HyperTune (with 
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod 
support) for ResNet on ImageNet. 

Considering the ImageNet task first, HyperTune with MP and 
GPipe yield trial runtimes approaching 3.5 hours with ResNet. 
However, HyperTune with DP shows significant improvement for 
ResNet in Figure 1, with an average runtime around 2.5 hours 
(almost 40% faster). Ray Tune with Horovod significantly 

outperforms all HyperTune variants with an average runtime of 
1.7 hours, almost 110% faster than HyperTune with MP or GPipe. 

 

 

Figure 2: Trial-level runtime comparison of HyperTune (with 
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod 
support) for AlexNet on ImageNet. 

As a testament to the influence of the dataset itself, AlexNet 
runtime in Figure 2 exhibits the same performance difference 
between DP and MP. For the ImageNet problem, DP is clearly 
better suited to handle the extremely large dataset and resulting 
model. Furthermore, the DP-based Ray Tune with Horovod has 
integrated many significant optimizations over many years of 
open-source development, which explains the disparity between 
our less-mature HyperTune DP tool. 
 

 

Figure 3: Trial-level runtime comparison of HyperTune (with 
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod 
support) for ResNet on MNIST. 

Clearly illustrating how neither MP nor DP are ideal for all 
problems, we see clear advantages with MP-based DNN training 



 
 

for the MNIST dataset in Figure 3. Exhibiting low variance across 
all nine trials, all methods tested finish with 420-450 seconds with 
a ResNet DNN. In this case, HyperTune with GPipe ran the 
fastest with an average runtime of 428 second per trial. It ran 
1.6% faster than Horovod + Ray Tune (435 seconds/trial), 2.8% 
faster than DP (440 seconds/trial), and 4.7% faster than MP (448 
seconds/trial). 
 

 

Figure 4: Trial-level runtime comparison of HyperTune (with 
MP, DP, and GPipe parallelism) and Ray Tune (with Horovod 
support) for AlexNet on MNIST. 

Further illustrating the suitability of MP training for MNIST, 
HyperTune MP demonstrates superior runtime for the AlexNet 
DNN, with an average runtime around 60 seconds. More 
importantly, despite evaluating hyperparameter configurations 
that significantly increase DP training runtime, MP training 
runtime exhibits almost no variance. As evident in the first three 
trials in Figure 4, hyperparameters such as batch size and learning 
rate can significantly influence training runtime (and memory 
consumption). Due to the efficiency gained by partitioning the 
large DNN, MP can maintain typical runtime speeds for this DNN 
and dataset. Along with HyperTune with DP, Ray Tune with 
Horovod exhibits higher runtimes around 95 seconds for T0 
through T2 (batch size 64) and 65 seconds for T3 through T8 
(batch size either 128 or 256). In contrast to substantial disparity 
in our ImageNet experiments, the performance of HyperTune with 
DP is nearly identical to Ray Tune with Horovod. This suggests 
that the additional enhancements and capabilities of Ray Tune are 
exploited more effectively when applied to larger datasets.  

 
4.2 Trial-Level Peak DNN Memory Usage 
Using the same experiment setup, we compare the peak memory 
usage of the DNNs trained by HyperTune and Ray Tune at the 
same trial-level. Applied to the ImageNet dataset, we see 
improvements in memory usage with GPipe that correspond to the 
specified degree of parallelization (8, which fixed across all 
experiments). In their pipeline parallel approach, this means that 8 
micro-batches will be used for partitioning. As such, GPipe peak 

memory utilization reflects the expected 8x reduction visible in 
our experiments (such as those in Figure 5 and Figure 7). In our 
peak DNN memory usage experiments, the reported value reflects 
the peak usage per distributed model partition within the 
respective parallelization strategy. 
 

 

Figure 5: Trial-level peak memory usage comparison of 
HyperTune (with MP, DP, and GPipe parallelism) and Ray 
Tune (with Horovod support) for ResNet on ImageNet. 

Although Ray Tune with Horovod often outperforms 
HyperTune in runtime, it uses significantly more memory in doing 
so, exceeding 20 gigabytes at peak in some trials. Significantly 
improving upon all other models, HyperTune with GPipe 
maintains near-constant peak memory utilization of 2.5 gigabytes 
across all trials, as shown in Figure 5. To rationalize the variance 
between trials, we note that trials T5 / T2 use batch size 256, T4 / 
T2 use batch size 128, and trials T3 / T1 use batch size 64.  

 

 

Figure 6: Trial-level peak memory usage comparison of 
HyperTune (with MP, DP, and GPipe parallelism) and Ray 
Tune (with Horovod support) for AlexNet on ImageNet. 



 

 

Considering the obvious effect of batch size on memory usage, it 
is not surprising that T5 / T2 have the largest memory usage, 
followed by T4 / T2, and then T3 / T0. Independent of the 
influence of such hyperparameters, which are proportionally 
reflected by all tested models, HyperTune with MP and DP 
consistently utilize far less memory than Ray Tune with Horovod. 
Despite the omission of a GPipe HyperTune implementation, the 
AlexNet evaluation in Figure 6 largely reiterates this relative 
ranking, albeit in slightly smaller proportions. 

The near-zero variance (in peak memory usage) provided by 
GPipe promises true horizontal scalability for a future likely 
subject to increasingly massive datasets and DNN models. Further 
exemplified in our MNIST experiments (Figure 7), GPipe appears 
to maintain extremely low peak-memory usage across many 
datasets. These results indicate that GPipe-based HPO can 
efficiently leverage much larger distributed environments with 
fewer resources, such as large clusters with lower-quality 
commodity hardware, which is a significant improvement to the 
state of the art.  
 

 

Figure 7: Trial-level peak memory usage comparison of 
HyperTune (with MP, DP, and GPipe parallelism) and Ray 
Tune (with Horovod support) for ResNet on MNIST. 

GPipe aside, our MNIST evaluations of HyperTune and Ray 
Tune with both DNN models suggest that MP-based partitioning 
is much more optimal in terms of peak memory usage. Ray Tune 
with Horovod used ~4.7% more memory than MP for trials T0 
through T5, which correspond to batch sizes of 64 and 128. For 
T6 through T8, which has batch sizes of 256, Horovod + Ray 
Tune used 30% more memory than MP. As established in the 
literature, MP is difficult to judge directly, since its effectiveness 
is heavily reliant on the optimality of the chosen DNN 
partitioning. 

While both HyperTune DP and Ray Tune with Horovod (DP) 
share very similar performance for MNIST, HyperTune with DP 
consistently requires less memory (and with less variance) for the 
larger ImageNet dataset. This indicates that the combined 
overheads of Ray and Horovod may be unnecessary and counter-

intuitive for certain hyperparameters and datasets, since 
HyperTune’s basic DP implementation was much more efficient 
on ImageNet (Figure 5). Considering Ray Tune’s runtime speedup 
in the corresponding test (Figure 1), HyperTune with DP seems to 
offer a solution which better prioritizes memory efficiency in the 
apparent runtime vs. memory tradeoff. 
 

 

Figure 8: Trial-level peak memory usage comparison of 
HyperTune (with MP, DP, and GPipe parallelism) and Ray 
Tune (with Horovod support) for AlexNet on MNIST.  

For AlexNet trained with MNIST data, all three HyperTune 
parallelization strategies resulted in near-constant peak memory 
usage, but MP maintained a low 2 gigabytes peak memory aross 
all trials.  
 
4.3 Experiment Performance Metrics 
 

Dataset Model Parallel 
Training 
Strategy 

Parameter 
Memory 
(GB) 

Buffer 
Memory 
(GB) 

Overall 
Runtime 
(s) 

ImageNet AlexNet DP 0.227618 0 22,740 
MP 0.227618 0 24,600 
GPipe N/A N/A N/A 
Ray Tune 0.227618 0 12,240 

ResNet DP 0.095207 0.000198
28 

18,120 

MP 0.095207 0.000198
28 

21,720 

GPipe 0.095207 0.000198
28 

25,020 

Ray Tune 0.095207 0.000198
28 

12,840 

MNIST AlexNet DP 0.227561 0 712 
MP 0.227561 0 563 
GPipe N/A N/A N/A 
Ray Tune 0.227561 0 937 

ResNet DP 0.095207 0.000198
28 

3,960 

MP 0.095207 0.000198
28 

4,080 

GPipe 0.095184 0.000198
28 

3,900 

Ray Tune 0.095207 0.000198
28 

4,140 



 
 

Table 1: Experiment-level memory usage and runtime 
comparison of HyperTune (with MP, DP, and GPipe 
parallelism) and Ray Tune (with Horovod support) for ResNet 
and AlexNet on ImageNet and MNIST. 

At the experiment-level, we observe mixed results for overall 
runtime that echo the mixed results of the constituent trials. 
Specifically, Ray Tune with Horovod executes all ImageNet HPO 
experiments nearly 100% faster than the next best HyperTune 
variant. However for AlexNet on MNIST, HyperTune with MP 
executes 66% faster than Tune, with improved runtime for other 
variants as well. ResNet on MNIST executes fastest using 
HyperTune with GPipe, although marginally. We reiterate the fact 
that certain datasets and models may be better suited for DP or 
MP, which has been apparent across our tests. These statistics 
validate our original motivation to create a modular HPO tool, one 
which allows different training strategies to be substituted in 
different situations. Future work should explore the use of 
profiling runs and other heuristics to dynamically determine these 
partitionings (or partitioning strategies), as has been explored in 
recent distributed DNN training research. 

5 Conclusion 
In this work, we presented our fully distributed HPO tool 
HyperTune, the first (to the best of our knowledge) to modularize 
its parallel DNN training strategy to support recent MP and PP 
approaches. We show that for some datasets and models, our DP-
based HyperTune variant utilizes less memory than the popular 
DP-based Ray Tune with Horovod. Moreover, we demonstrate the 
utility of the GPipe parallel DNN training strategy for HPO, 
proving that it efficiently partitions training across more devices 
while maintaining or reducing runtime. In summary, our work 
justifies the integration of recent hybrid parallel DNN training 
strategies into future HPO tools and gives rise to new directions of 
future research in this field. In future work, our tool could be 
improved to support more advances in parallel DNN training, 
such as the promising PipeDream approach. Further testing using 
models and datasets from different domains would identify more 
strengths and weaknesses. Additionally, partitioning exploration 
algorithms could be incorporated to explore the large search space 
formed by trial-level and training-level partitionings. 
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