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Abstract 
A key participant in financial markets around the world, the market maker holds the critical 
responsibility of providing liquidity through its obligation to quote buy / sell prices and execute 
trades. However, this task is not without risk, as the marker maker must simultaneously manage its 
own inventory, avoiding personal financial loss whilst ensuring liquidity for the current market 
demand. In this survey, we evaluate the state of the art for reinforcement learning approaches to the 
optimal market making problem. Over time, these approaches have strategically incorporated many 
landmark advancements from the reinforcement learning literature, such as adversarial 
reinforcement learning and deep reinforcement learning. In addition, many classic and modern 
market making models from the economics literature are central to their design, giving rise to 
diverse interpretation of a market making agent’s motivations and resulting reward formulation. 
Keywords: reinforcement learning, market making 

1 Introduction  
Following a rapid pace of computer technology innovation over the past several decades, many 
components and participants of global stock markets have been augmented or replaced by 
computers. Most notably, stock market investors have sought the aid of artificial intelligence for 
the purposes of improving their trading strategies, in the hopes of ultimately increasing their 
realized profits. Market makers, who are important participants in most stock markets, stand to 
benefit from these innovations in similar ways. As explained by Avellaneda and Stoikov (2008), 
the role of a market maker is to provide liquidity on an exchange by continuously quoting bid (buy) 
and ask (sell) prices for which they are prepared to buy or sell specific quantities of assets. Here, 
liquidity is defined as the availability of the assets being trading on the market. Sufficient liquidity 
is vital for smooth operation of any market, due to its inherent tradeoff with asset value. 

In most modern financial markets, traders (regular market participants) submit bid or ask limit 
orders to a central matching engine, specifying the quantity and worst-case price at which the trader 
is willing to buy or sell an asset (Lim & Gorse, 2018). In this model, commonly referred to as a 
(centralized) limit order book market (or simply an exchange), limit orders are added to a 
centralized limit order book whenever the parameters of a given limit order cannot be matched with 
a corresponding order (a buyer matched with a seller). Unless limit orders are cancelled, they 
remain on the book until the matching engine is able to match it with incoming order. Most markets 
operate using price / time priority rules, meaning that outstanding orders are prioritized first by 
their price (matching highest bid with lowest ask) and breaking ties by time of arrival 
(Bessembinder, 2001). The primary alternative to a limit order book market is the over-the-counter 
(OTC) market (also known as a dealer market), which exhibits a decentralized design that facilitates 
order placement directly between market makers and investors (Ganesh et al, 2019). A market 
maker is often referred to as a dealer in the context of an OTC market, which better emphasizes 
the decentralized nature of their role, however the two are otherwise equivalent for the purposes of 
this survey. 
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The market making problem is concerned with the discovery of optimal actions for all possible 
situations a market maker may encounter. At any point in time, the market maker acts by setting 
bid and ask quotes (which together define the bid-ask spread), and selectively accumulating 
(liquidating) assets for (from) their own inventory. Logically, the market maker may characterize 
state using its current inventory levels or current market prices. In practice, most markets impose a 
minimum price change called a tick, which discretizes these actions. The market making problem 
fits naturally within a reinforcement learning framework, where these actions and states generally 
appear alongside a variety of others. In most works, the problem is formulated as a partial Markov 
decision process, due to (from the market maker’s perspective) the hidden nature of information 
such as the true value of an asset or beliefs of other traders (Chan & Shelton, 2001). In general, all 
reinforcement learning approaches must develop a model or simulation of the dynamics of the 
market at hand, which will ultimately constitute its training environment. This is due to a lack of 
preexisting simulators in the financial domain, which would offer a standardized environment for 
the training and testing of such agents (Ganesh et al., 2019). 

The mathematical complexity of the market making problem (as well as other financial 
problems) is well established. Researchers such as Lim & Gorse (2018) argue that mathematical 
modelling of financial markets cannot truly capture the reality of all systems and processes that 
comprise them. In modern markets with growing numbers of electronic or automated trades, the 
job of the market maker is further complicated by the increasing frequency and volume of orders. 
These challenges have become more severe in today’s electronic high-frequency markets, which 
clearly motivates the use of intelligent algorithms to aid the market maker. With algorithms such 
as reinforcement learning, not only do market makers stand to improve their own profit, but also 
improve the stability of the market itself. 

2 Survey 
Although the publication of reinforcement learning approaches for optimal market making has been 
somewhat sporadic, most noteworthy approaches have evolved in lockstep with the publication of 
new (or renewed interest in older) market making models from the economics literature. As foretold 
in seminal publications such as Chan & Shelton (2001), a simple taxonomy for reinforcement 
learning market making models has remained, directly inspired by these early works in the 
economics and quantitative finance literature. Specifically, most approaches to the market making 
problem are classified as either information-based or inventory-based. In an inventory-based 
model, the market maker is primarily concerned with the management of their inventory, aiming 
to reduce the risk associated with holding larger amounts of inventory (Ho & Stoll, 1981). 
Moreover, inventory risk and order flow uncertainty are critical in the market maker’s 
determination of the bid-ask spread. This model has been thoroughly studied in influential 
economics publications such as Garman (1976), Ho & Stoll (1981), and O’Hara & Oldfield (1986). 
On the other hand, in an information-based model, the market maker considers itself (along with 
other uninformed traders) as having an informational disadvantage to informed participants within 
the market. In contrast to the inventory-based model, this perspective suggests that the bid-ask 
spread could be a purely informational phenomenon, rather than a product of inventory risk (Chan 
& Shelton, 2001). Since most models are inventory-based at the time of this writing (Gašperov et 
al., 2021), we further divide all approaches by important strengths, properties, and challenges 
addressed using reinforcement learning techniques. 

2.1 Information-Based Market Models 
Widely regarded as the first application of reinforcement learning to the market making problem, 
Chan & Shelton (2001) proposed an adaptive information-based reinforcement learning model. In 
their paper, three approaches are introduced to directly leverage the well-established SARSA, 
actor-critic, and Monte Carlo methods respectively. Owing to the partially-observable Markov 
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decision process (POMDP) formulation of the market making problem, convergence to a single 
ideal policy cannot be guaranteed for any of the three approaches. Regardless, the authors’ 
evaluation does illustrate how after 500 training episodes, all three models will likely exhibit 
convergence. Although the efforts of Chan & Shelton served as an important first-step, the 
proposed reinforcement learning algorithms were disconnected from the underlying model, 
limiting it to more general applications. Further, several assumptions limit the utility of their 
methods in practice, such as the presumed existence of a true price process and explicit 
differentiation between informed and uninformed traders. Despite the relative simplicity of their 
model, their temporal-difference approach struggles due to partial observability and excessive 
noise. 

Building directly upon the information-based approach of Chan & Shelton, Kim and Shelton 
(2002) develop a model of the order flow to directly represent the process of orders being placed 
over time. The resulting model eliminates the need for any assumption concerning the true price, 
or the existence of a true price process. This approach inherently models the reaction of market 
participants to the bid and ask prices set by the market maker. However, the model is rewarded 
only by maximizing profit, and several rigid assumptions are asserted. Orders are assumed to be 
stochastically generated and conditioned on market conditions. Concerning the generative aspect, 
arrival times and order sizes are assumed to follow a fixed gamma distribution, while the side (buy 
vs. sell) and order prices follow a normal distribution given market conditions. 

While early information-based models were influential, their simplicity restricted the real-
world utility, especially in modern electronic markets of recent years. Several works sought to 
extend these early approaches by addressing specific problems that arise from their assumptions. 
Mani et al. (2019) introduce a risk-sensitive reinforcement learning approach for market making, 
aiming to reduce risk from holding excessive inventory while increasing net profit. Their approach 
directly integrates the classical Glosten-Milgrom information model (Glosten & Milgrom, 1985). 
A market simulation is built, consisting of a single market-making agent, along with groups of 
informed and uninformed trading agents. The authors extend the Chan & Shelton (2001) 
reinforcement learning model, integrating the Double SARSA variant to learn two independent Q-
value estimates (for action selection and Q-value update). The conservative nature of their risk-
averse policy is offset with a Boltzmann Softmax policy, and is shown to yield high profits while 
maintaining low inventory. Several weaknesses do exist however, including the lack of any 
convergence guarantee for the Softmax operator. Further, their market formulation does not model 
competition from other market-makers, which hinders real-world utility. This limitation is common 
among information-based approaches due to their simplistic model. 

2.2 High-Frequency Trading 
By leveraging consistent improvements to high-speed communication technologies, modern 
markets now support the execution of trades in timescales as low as microseconds. Referred to as 
high-frequency trading, this new standard for typical trade frequencies and volume certainly 
increases the complexity in deriving a mathematic model of the market dynamics. While most 
market making research assumes a traditional low-frequency market environment, recent research 
has indeed considered the ramifications of the modern high-frequency environment inherent to 
many major stock markets. Most notably, Avellaneda & Stoikov (2008) formalize a landmark 
mathematical model of a modern market, which accounts for the expectation of high-frequency 
data (trades) that characterize modern limit order books. 

Naturally, several recent reinforcement learning approaches for market making have 
incorporated this new standard, referred to in the literature as the Avellaneda-Stoikov model, in 
hopes of mitigating inventory risk more effectively. Notably, Lim & Gorse (2018) published the 
first practical reinforcement learning approach for high-frequency market making, formulating a 
discrete Q-learning algorithm. The formulation assumes Markovian state transitions, along with a 
fully observable environment as opposed to the typical partial variant. Citing the fact that real 
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markets impose a minimum price change (a tick), the authors present a discrete action space to 
describe the market maker’s chosen bid and ask quotes (relative to the best bid and ask), along with 
a state space denoting the time remaining and inventory size. Terminal rewards for the trading 
period 𝑇 are calculated using the following form, which accounts for the constant absolute risk 
aversion (Babcock et al., 1993) commonly abbreviated as CARA. 
 

𝑅! = 𝛼 − exp	(−𝑟(𝐶! − 𝑖!𝑆!)) 
 
Here, 𝛼 is a chosen constant, 𝑟 is the risk aversion parameter, 𝐶! is profit (loss), and 𝑆! is the 
average price to immediately liquidate 𝑖! shares. Additionally, a novel immediate reward is 
calculated for each timestep 𝑡, as described below 

 
𝑅" = 𝑎(𝑉" − 𝑉"#$) + 𝑒%&!𝑠𝑔𝑛(|𝑖"| − |𝑖"#$|) 

 
where 𝑎 and 𝑏 are constants, 𝑉" is the agent’s value, 𝑖" is its inventory, and 𝜏" is the trading time 
remaining. Discrete Q-learning is employed directly using diminishing 𝜖-greedy and learning rate. 

Spooner et al. (2018) present another high-frequency market making approach, improving upon 
Chan & Shelton’s less promising temporal-difference agent by incorporating eligibility traces. 
First, a simulator is built by reconstructing the market with high-frequency equities data. Learning 
is evaluated using several variants of the general-purpose Q-learning, SARSA, and R-learning 
algorithms (similar to Chan & Shelton’s), ultimately finding SARSA to be optimal. While 
considering several reward function variants, the authors identify an asymmetrically dampened PnL 
reward as optimal, which is formulated as follows 

 
𝑟' = Ψ(𝑡') − max	[0, 𝜂 ∙ 𝐼𝑛𝑣(𝑡')∆𝑚(𝑡')] 

 
where Ψ is the PnL function for timestep 𝑡', 𝐼𝑛𝑣 is the agent’s inventory, 𝑚 is the mid-point of the 
bid-ask spread, 𝜂 is a chosen scale factor, and ∆ is the quoted bid-ask spread. 

2.3 Risk-Sensitivity and Safety 
Due to an assumed ignorance towards risks inherent to market making, early approaches such as 
Chan & Shelton (2001) can be characterized as risk-neutral. A risk-neutral agent (or model) is only 
concerned with maximizing the expectation of its defined return and is not concerned with the 
variance of the sum of discounted rewards (Mani et al., 2019). Likewise, a risk-averse agent is 
indeed concerned by this variance, and its effect on the relative importance of avoiding risky 
actions. These concepts are well established in the literature under the label of risk-averse or risk-
sensitive reinforcement learning. Minimizing risk is critical in certain high-stakes problems such 
as market making, where it is crucial to minimize risk of holding too much inventory or quoting a 
bid-ask spread that is too wide. 

To cite practical implementations, the information-based reinforcement learning approach 
presented by Mani et al. (2019) is specifically formulated for risk-aversion. Meanwhile, other 
works such as Spooner & Savani (2020) leverage the risk-sensitivity inherent to adversarial 
reinforcement learning, which mitigate risk by accounting for model misspecification. Mani et al. 
build upon the work of Mihatsch and Neuneier (2002), modifying their risk-sensitive reinforcement 
learning model to accommodate the proposed Double-SARSA and one-step temporal difference 
learning. This addition yields a higher degree of flexibility over traditional risk-neutral agents that 
preceded it, allowing for direct parameterization of acceptable risk via the risk sensitivity degree 
𝑘 ∈ (−1,1). More specifically, their reinforcement learning formulation dynamically weighs agent 
transitions, using 𝑘 to appropriately overweight (underweight) transitions to successor states with 
lower (higher) than average rewards. The resulting model is shown to reduce risk (variance) but 
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tends to reduce profit by tolerating less risk. Ganesh et al. (2019) incorporate a similar risk 
sensitivity variable in their proposed agent’s reward formulation, in the form of a penalty term 𝛼 
applied to the total profit and loss (PnL). This term is effective in reducing the inventory PnL 
variance and excessive mid-price fluctuations. 

2.4 Adversarial Robustness to Model Uncertainty 
While many early works in market making literature assume complete knowledge of market 
conditions, true market conditions are highly unpredictable in real-world markets. To combat these 
inherently adversarial and uncertain market conditions, recent works have explored the application 
of adversarial reinforcement learning techniques. These agents offer the advantage of being more 
robust to market conditions or model misspecification, and provide inherent risk-aversion as 
described in the previous section. 

Extending the concept of adversarial reinforcement learning, Pinto et al. (2017) formalize the 
notion of robustness in their definition of robust adversarial reinforcement learning (RARL). 
Spooner and Savani (2020) adapt this formalization to build an adversarial reinforcement learning 
approach for the market making problem. In their framework, an adversary is created (to represent 
all other market participants) and becomes the central opponent in a zero-sum stochastic game 
against the market maker. While playing this game, the market maker learns to avoid playing 
strategies that are not robust (which are easily exploited by the adversary), seeking convergence 
towards a Nash Equilibrium strategy. Unfortunately, convergence to Nash Equilibrium is not 
guaranteed, though convergence to approximate Nash Equilibrium is shown to be consistent. This 
weakness is offset by its absolute performance and robustness to model uncertainty, which 
improves upon that of prior approaches. 

Although Pinto et al. define the framework for adversarial learning, its adaptation is subject to 
interpretation. While Spooner and Savani (2020) instruct the adversary to alter the simulation mode 
parameters, works such as Gašperov & Kostanjčar (2021) choose to perturb the market maker agent 
directly. In both approaches, a specific state and action space comprise the adversary, who learns 
to adversely affect the market maker agent on behalf of the presumed adversarial market. The 
Gašperov & Kostanjčar adversary seeks to displace the market maker’s bid and ask quotes, 𝑄"%'( 
and 𝑄")*+, though only to a limited degree. Consistent with their rivalry, the reward of the adversary 
is inverse to that of the market making agent 

 
𝑅′",$ = −𝑅",$ = N𝑀",$ − 𝑄")*+P𝟏R𝑄")*+𝑒𝑥𝑒T + N𝑄"%'( −𝑀",$P𝟏R𝑄"%'(𝑒𝑥𝑒T + 𝜆|𝐼",$| 

  
where for a given timestep 𝑡, 𝑅′" and 𝑅" are the reward for the adversary and market maker agent 
(respectively), 𝑀" is the mid-price, 𝟏{𝑄"∙𝑒𝑥𝑒} is an indicator function for whether the bid (ask) 
order is executed, 𝜆 is the volatility / risk aversion parameter, and 𝐼" is the inventory level. While 
this work also shows impressive results, a potential weakness is the omission of certain important 
information from the reward formulation, such as the price ranges defined in the state formulation. 

2.5 Advantages In Deep Learning 
Following recent advancements in the field of deep neural networks, classical reinforcement 
learning techniques have incorporated these concepts under the label of deep reinforcement 
learning (DRL). Built upon the foundation of neural networks, deep reinforcement learning gains 
superior expressivity for the estimation of policies and value functions. Influential deep 
reinforcement learning techniques such as Deep Recurrent Q-Network (DRQN) (Hausknecht & 
Stone, 2015) are highly effective in integrating information over time, and have been adapted to 
the market making problems in works such as Kumar (2020). In this particular approach, DRQN is 
modified to incorporate double Q-learning and naturally employs temporal difference learning. 
Moreover, the evaluation presented illustrates significant improvements over the non-deep Spooner 
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et al. (2018) approach, namely to stability and average PnL reward. On the other hand, deep neural 
networks have been integrated more creatively within existing reinforcement learning algorithms. 
Guéant & Manziuk (2019) integrate multiple deep neural networks into an actor-critic-like 
algorithm, which are responsible for several estimations concerning their value function and trade 
probabilities. The more general application of deep learning to the market making problem has 
procured many influential models such as Deep Hedging (Buehler et al., 2019), and has overlapped 
with reinforcement learning approaches on occasion. 

According to Kumar (2020), reinforcement learning may be slow to learn in large state spaces 
or for complex control spaces, which is a motivation for similar works such as Gašperov & 
Kostanjčar (2021). Their framework incorporates signals from two standalone supervised learning-
based signature generating units, which are fed to a DRL unit for market making. The integration 
of these supervised learning units brings additional advantages to deep reinforcement learning, such 
as the ability to leverage labelled data and to consider the sequentiality of the market making 
problem. Though these strengths ultimately yield improvement over several recent benchmarks, 
the approach is potentially weakened by its limitation to single-asset market making. 

2.6 Market Making in OTC Markets 
While the market dynamics for nearly all market making approaches discussed adhere to limit 

order book markets, many other prevalent market structures have not received much attention. Most 
notably, over-the-counter (OTC) markets have been overlooked within the reinforcement learning 
market making literature. Until the publications of certain recent works, the distinction between 
limit order book and OTC markets has not been directly addressed, instead modelling their 
reinforcement learning environments using simpler limit order book market dynamics established 
in early works like Chan & Shelton (2001). In contrast to the centralized matching engine in limit 
order book markets, market makers (dealers) in OTC markets interact directly with investors to 
facilitate trades (Ganesh et al., 2019). The centralized limit order book allows market makers and 
traders to observe all outstanding and executed transactions, however the decentralized OTC 
market restricts observation to trades in which the participant has been involved. Unsurprisingly, 
the observability of this information is a central assumption in most works, motivating the design 
of reinforcement learning formulations that can operate in such conditions (or perhaps more 
generally, partially observable market conditions). 

In OTC markets, formulations generally define a relationship consisting of multiple market 
makers and multiple investors. Further, the interactions between a market maker and investor must 
be explicitly modelled in lieu of an actual limit order book process. In the recent work of Ganesh 
et al. (2019), a multi-agent reinforcement learning simulator is created to model the OTC market 
and the constituents. Within the simulator, investor agents use a probabilistic trade generation 
process to select a market maker agent to trade with, but greedily select the market maker with the 
most competitive quote. OTC market makers may reference price information from an exchange, 
however crucial information must be derived from previous transactions. The Ganesh et al. market 
maker agent observes the market share and a reference mid-price, but derives typical information 
such as inventory and bid-ask spread curves directly from previous trades. Otherwise, an agent’s 
actions allow for setting the bid / ask quotes (and a unique inventory hedging fraction), and is 
rewarded based on a typical bid-ask spread PnL. 

The exploration of market making for other types of markets is not limited to any particular 
asset class, although most publications in this survey have generalized the notion of asset classes 
altogether. While Ganesh et al. (2019) explore market making in OTC markets, Guéant & Manziuk 
(2019) investigate market making for the exchange of corporate bonds within OTC markets. The 
presented model-based actor-critic-like algorithm is specifically designed to determine bid and ask 
quotes over large sets of corporate bonds (perhaps a few dozen). This issue of scalability is a 
significant oversight in the low-dimensional settings established in most other works. The authors 
also argue that reinforcement learning optimization for OTC market making necessitates the use of 
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a model, or initial estimation of model parameters. This is due to the fact that large datasets are not 
readily available for OTC markets (and the variety of assets traded therein), however this is not 
necessarily a problem for many simple limit order book markets studied in the literature. 

3 Analysis 
Due to the rapid pace of innovation in both artificial intelligence and electronic markets, many 
combinations of problems and solutions exist within the domain of optimal market making. Given 
the extreme variety of markets and regulations across the world, paired with the highly 
unpredictable nature of financial markets, no one solution may be optimal in all conditions or 
markets. Moreover, researchers rarely measure the performance of their models in real-world live 
markets, due to the obvious financial costs and related overheads. As such, authors adopt and adhere 
to a specific market model, and use simulations (historic data if available) to train and test their 
models. Moreover, early applications of reinforcement learning to market making presented simple 
models with simple market assumptions, leaving room for later works to mitigate these assumptions 
using various strategies. To establish the current state of the art in reinforcement learning 
approaches, we must account for the realities of the market making problem, and consider the 
relative capability of each model in addressing different aspects of the problem.  

Reinforcement learning market making models have evolved alongside models from the 
economics literature, either drawing inspiration from or directly integrating a specific economic 
market model. While many recent publications reiterate this sentiment, Lim & Gorse (2018) state 
that the market model presented by Avellaneda & Stoikov (2008) has become the industrial 
standard, due to its ability to capture the high-frequency nature of modern markets. Likewise, 
reinforcement learning market making agents have evolved alongside advances from the 
reinforcement learning literature, by either employing these advances directly or by extending 
them. Multiple recent approaches have reduced risk and increased profit by incorporating risk-
sensitive reinforcement learning or adversarial reinforcement learning, which will certainly remain 
at the forefront of future research. More importantly, deep reinforcement learning is proving to be 
essential in current state-of-the-art approaches, due to the rapid innovation occurring in the field of 
deep learning. Considering that the vast majority of reinforcement learning market making research 
has been published from 2018 onwards (Gašperov et al., 2021), it is clear that researchers are trying 
to keep up with recent deep reinforcement learning advances. 

The most promising approaches seem to incorporate many of the models and algorithms 
discussed, or perhaps tackle long-standing assumptions that have restricted the utility of many 
models. The state of the art is clearly characterized by innovate deep reinforcement learning models 
such as those proposed by Ganesh et al. (2019) or Gašperov & Kostanjčar (2021). The research of 
Spooner & Savani has demonstrated the potential of risk-adverse and adversarial reinforcement 
learning, and stands to benefit from further integration with deep reinforcement learning. 

Looking forward, Ganesh et al. and Guéant & Manziuk (2019) are charting new territory by 
generalizing the market making problem for OTC markets. While the research of market making 
for different market types is still relatively unexplored, many open problems persist. In general, 
deep reinforcement learning approaches are still few, and tend to adopt relatively primitive market 
models that undermine their advantages. Furthermore, many unrealistic assumptions are still 
common, such as the existence of a true asset price, the absence of trading costs, or ignorance of 
competing market makers and economic factors. Many assumptions have persisted due to 
insufficient training data or lack of a known solution, which is frequently noted in the literature. 

4 Conclusion 
While authoring this survey, I have developed considerable knowledge which spans the topics 
encompassed by market making and reinforcement learning. Due to the cross-disciplinary nature 
of this research problem, building foundational knowledge of financial markets and market making 
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was crucial for thorough analysis, and required extensive research exceeding the scope of the 
selected survey publications. By reviewing these publications, I now understand the challenges and 
capabilities of market makers that employ reinforcement learning, and the methods by which many 
challenges have been overcome. Additionally, I have been exposed to several new reinforcement 
learning techniques, and now understand their capabilities and relevance in the market making 
problem. This research has educated me on the true utility of many reinforcement learning 
algorithms, which often prove to be useful long after their inception. 

In future research, many challenges and assumptions remain to be solved. Most importantly, 
the continuous integration of new deep reinforcement learning approaches is sure to help address 
these challenges and improve efficiency, as has been demonstrated in recent research. I would 
recommend further investigation into the assumptions made by market models in both the 
economics and reinforcement learning market making literature. While several publications have 
focused on these assumptions, future research should continue to test potential solutions for 
remaining common assumptions. More specifically, emerging reinforcement learning techniques 
should be monitored for potential application to this challenge. 
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