
COMP-4960 Final Report 

Dr. Alioune Ngom 

Joel Rorseth 

104407927 



1.0  Introduction 

Throughout the Fall 2018 and Winter 2019 semesters, I have been researching under Dr. Alioune 

Ngom of the University of Windsor Computer Science Department. Given his research interest in 

the field of Bioinformatics, I spent both semesters investigating and developing techniques to 

perform drug repositioning (also known as drug repurposing). 

1.1  Problem Definition 

To establish the goals of my research, we first define the problem at hand. Drug repositioning is 

the processes of re-investigating existing drugs (whether approved by standards organizations or 

not), and identifying candidate drugs that would be suitable to treat a different disease. In the 

context of my research, the focus will be on identifying drugs to treat breast cancer. Thus, the 

goal of my research is to identify these repurposed drugs, by utilizing machine learning 

techniques on genetic expression data. Correlation must be determined between the expression 

profiles of breast cancer disease samples, and these candidate drugs. 

2.0  Input and Datasets 

The following datasets are necessary input to the scripts written for this project. 

2.1  Gene Expression Data 

/Datasets/brca_metabric/data_RNA_Seq_expression_median.txt 

!2



This 24,374 x 1906 matrix G records the genetic expression of 24,374 genes, for 1904 different 

breast cancer (patient) samples. In G, the first two columns are the the identifier of the measured 

gene. Any G[i,j] stores the gene i’s expression signature value within patient i’s sample. 

2.2  CNA Matrix 

/Datasets/brca_metabric/data_CNA.txt 

This 22,544 x 2175 matrix C records the discrete copy number data of 22,544 genes, for 2173 

patients. The first two columns of C denote the identifier of the gene at that corresponding row. 

Any C[i,j] is the copy number of gene i in patient j’s sample, and indicates that gene i is diploid 

if the value is 0. 

2.3  Breast Cancer Biomarker Network (By Subtype) 

/Datasets/Ten-Network Biomarkers/Subtype-1.xls  

For each subtype, there exists a .XLS representation of a graph (network) of genes. Each file is 

an n x 3 matrix N representing a weighted graph, where each row i is an edge, (N[i,1], N[i,2]) 

with weight N[i,3]. 

2.4  LINCS Breast Cancer Drug-Gene Z-scores 

/Datasets/Lincs-Breast-Cancer.RData 

The LINCS dataset is a 12,328 x 21,567 matrix L, representing the z-scores (of signatures) of 

12,328 genes treated with 1710 different drugs. The 1710 unique drugs appear in many columns 

in the original LINCS file, each with varying perturbation dose, time, and cell id. A common 

!3



dose, time and cell id are established in the script (discussed later) to reduce to 1710 unique drug 

columns. Any given L[i,j] stores a z-score for gene i when treated with drug j. 

2.5  Drugbank.ca XML Database   

/Datasets/full_drugbank.xml 

Taken from Drugbank.ca, this open source database file is an XML formatted export of the 

website’s current drug databank. Deeply nested within this file are the approval status(es) of all 

drugs listed within their database. 

3.0  Obtaining Genetic Z-scores For Breast Cancer Subtypes 

Given that we will be using machine learning techniques to suggest drugs for potential 

repurposing, we must consider the dimensionality of the data. Thus for each subtype, we employ 

several methods of removing gene measurements that are unimportant to this subtype. 

/Preprocessing/gene_filtering.r . For each subtype, we do the following two steps. 

3.1  Gene Filtering 

To begin this filtering process, we shift our focus to the Gene Expression Data, in matrix G. 

Containing signatures of 24,374 genes for 1904 patient samples, G has many unimportant genes. 

To determine importance, we import the Breast Cancer Biomarker Network N (for the current 

subtype), and the CNA Matrix C.  Since G contains the most genes, we reduce G by removing all 

rows (genes) which do not appear in C. This is necessary due to the fact that each gene will need 

a CNA record in order to determine its z-score in the next step. Next, to further refine the 

!4



biomarker network N, we remove all edges in N whose weight is less than 50%. G then removes 

all gene rows which do not appear in N. We have now reduced G to include only genes 

significantly important to this subtype. Depending on the breast cancer subtype, the gene 

expression data G is now reduced to 50-200 genes, from 24,374. 

3.2  Calculating Z-scores 

After filtering the genes in the gene expression matrix G, we are prepared to calculate the z-

scores of the few hundred genes for each subtype. We aim to establish a new matrix Z, of 

identical dimensionality to that of G, where Z[i,j] =  z-score(G[i,j]) . In the script, we calculate z-

scores row by row, for each gene in G.  

For the current gene (row i) in G, we start by determining the patients within C for whom this 

gene was diploid. Specifically, a patient (represented within the jth column of C) is diploid for 

this gene if C[i,j] = 0. We then extract the expression data for gene i in G, only for this subset of 

diploid patients columns. This subset contains the patient samples that are useful in the z-score 

formula. As such, the script calculates the mean µ and standard deviation σ on the subset, for this 

gene. Following this, z-scores are calculated for each (unfiltered) jth patient G[i,j] for the current 

ith gene, using the common formula  Z[i,j] = (G[i,j] - µ) / σ . 

Having calculated a z-score for each patient’s gene expression, we have essentially determined a 

z-score based representation of the genes important to each subtype. In order to compare these 10 

diseases with the z-scores of drugs we will be investigating, we require a single vector for each 

!5



breast cancer subtype, listing a single z-score for each gene. Thus, we compute the average of the 

z-scores in Z for each corresponding gene, inserting them into a table mapped to their 

corresponding gene name. This n x 2 table is written to subtype_s_zscores.csv , for each subtype 

s for which n genes remained in G. 

4.0  Creating the Z-score Matrix 

To consolidate the breast cancer data (for each stage) and the drug data, the second script 

combines both into a single matrix M. Given that we computed z-scores for genes relevant to 

each subtype, we merge this data with drug z-scores taken from the LINCS Breast Cancer Drug-

Gene Z-scores matrix L. 

4.1  Removing Duplicate Drugs from LINCS 

As mentioned in Section 2.4, the original LINCS z-score matrix is 12,328 (genes) x 21,567 (drug 

records). Upon further investigation, Only 1710 unique drugs are measured in the 21,567 

columns, but were measured with varying parameters (perturbation dose, perturbation time, and 

perturbation cell id). Taking the most common experiment parameters, we filter to columns with 

a dose of 10.0 um, time of 24 hr, and cell id MCF7. This leaves approximately 100 columns 

sharing drug name and parameter values, which are then arbitrarily pruned by the script. 

4.2  Combining Disease and Drug Z-scores 

As input to this secondary script, we now have a reduced L of size 12,328 x 1710 (genes by 

drugs), and a vector Di of variable length n for each subtype i. For each breast cancer subtype i, 

!6



we load Di from file, and create reduced copies of both L and Di , containing only genes which 

are common to both (their intersection). Thus Di has new length n’ , with L reducing to n’ x 1710. 

At this point, |Di| = n’  , allowing it to be appended to L as an additional column. The script 

performs this operation by inserting into the first column position (and shifting the columns) of 

L. The transpose of this merged matrix becomes M, which contains the z-scores for an important 

subset of genes for a given breast cancer subtype and 1710 drugs. M is written to 

all_zscores_subtype_s.Rds, for each subtype s. 

5.0  Reducing the Set of Drugs 

Entering the third script, each subtype has a matrix M with scores for the subtype disease and 

drugs from LINCS. In order to use machine learning to identify candidate drugs for 

repositioning, we must reduce each M further (to reduce dimensionality). 

5.1  Building Anti-Correlation Matrix to Help Filter 

To begin the final filtering process (this time for the drugs), the third script builds an anti-

correlation matrix A for each M, by comparing drug z-scores (stored in M[2…n, j]) for each gene 

with corresponding z-scores for the disease (stored in M[1, j]). Thus, given M of size n x m , we 

create A of size (n-1) x m by using the following assignment in a for loop (∀i > 2): 

!  A[i, j ] =
+1 if M[i,j] > 0 and M[1,j] < 0
-1 if M[i,j] < 0 and M[1,j] > 0
 0 otherwise

!7



In the above piecewise assignment, the anti-correlation matrix A[i,j] is assigned +1 if gene j 

indicates up-regulation when drug i is applied, or -1 if down-regulation occurs. These two 

instances are important, and are indicators that a given drug has a meaningful effect treatment for 

this breast cancer disease (subtype). With the remaining values being assigned 0, we similarly 

consider these gene / drug pairs to be useless. The script then proceeds to remove 50% of the 

worst rows (drugs) in M, where the worst are the (corresponding) rows which contain the most 

0’s in A. A similar filtering process is applied column-wise, where k of the worst columns are 

pruned (k being the number of 0’s in the row with least number of 0’s). Using this process, each 

M has been reduced in size to 855 x m, for some m genes that have survived these filtering steps. 

For each subtype s, M is written to reduced_zscores_subtype_s.Rds. 

6.0  Extracting Drug FDA Approval Status 

Before determining which drugs closely align with the breast cancer subtypes, we hope to 

augment the results by determining the FDA approval status of our LINCS drugs. Two Python 

scripts have been written to explore the Drugbank.ca XML database, and extract the approval 

status of drugs listed within. extract_drugbank_approval_status.py parses through the XML, 

writing a JSON mapping of Drugbank.ca drugs to their listed approval statuses ("approved", 

"illicit", "experimental", "withdrawn", "nutraceutical","investigational", or "vet_approved") into 

drugbank_approval_status.json. The second script get_lincs_approval_status.py cross references 

the Drugbank mapping with the 1710 LINCS drugs, writing a new mapping of LINCS drugs 

found in Drugbank, to their approval statuses, into lincs_approval_status.json. Of the 1710 

LINCS drugs, 1086 of them are recorded in Drugbank and give us their approval status. 

!8



7.0  Clustering to Determine Drugs Close to Disease 

In the final step of the project, for each breast cancer disease subtype, we consider plotting the 

disease and (n-1) drug rows from M (size n x m) in m dimensional space. The drugs closer to the 

disease point are proportionally more suitable for repurposing (for this subtype). To gauge 

proximity of the points, we may employ machine learning techniques to cluster and determine 

drugs with similar profiles to each breast cancer subtype. 

7.1  Clustering With K-Means 

Using the kmeans function in the R library, the cluster_drugs.r script is able to automatically 

cluster each M into k clusters. Using 2 < k < 8, the clusters are then examined manually to 

determine the cluster P containing the point representing the current subtype disease. Using a 

common mean squared error formula, the other (drug) points within P are sorted by increasing 

distance to the sole disease point. In case of the disease point being the only point in P (common 

for k > 3), the script merges the closest cluster into P and proceeds as usual. Thus for each 

subtype i and value k, we obtain a subset of the drugs in M, ordered by closeness (criteria for 

repositioning) to the disease. Concatenated with the FDA approval statuses obtained in Section 6, 

this subset P is written to k-means_subtype_s.csv for each subtype 1 < s < 10 and K-Means 

parameter 2 < k < 8. 

!9


